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Summary

3D Ideal Linear Peeling Ballooning
Theory in Magnetic Fusion Devices

Nuclear fusion is the fundamental process that gener-
ates heat and light in the stars but it is also a promising
potential candidate for the generation of energy by man.

However, where in the center of stars the combination of extreme
temperatures with extreme pressure is what drives light elements
close enough together for them to fuse and release part of their
combined mass as energy, on earth only extreme temperatures
can be employed. Matter at these temperatures exists in the state
of plasma, where the atoms are stripped clean of their electrons.
In the resulting physical system the presence of long term elec-
tromechanical forces between the charged particles can lead to
violent collective behavior. Therefore, the general question of
confining hot plasma in a stable way is crucial in order to achieve
fusion. One strategy of doing this is by employing powerful mag-
netic fields to guide the charged particles around a toroidal con-
figuration. This work is about a class of instabilities that these
configurations are susceptible to, called high-n instabilities.

High-n instabilities are instabilities that have strong localiza-
tion around the magnetic field lines that confine the plasma, and
they have previously been identified as possible culprits for some
significant processes that occur in magnetic configurations, such
as the periodic release of energy through Edge-Localized Modes
(ELMs), or even the complete loss of confinement during disrup-
tions, during which a large amount of energy is released to the
reactor walls, damaging them.
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However, whereas much work has been performed in this
field, the analysis of high-n instabilities in realistic 3-D geome-
tries, including the effects of the deformation of the plasma edge,
has not yet been done yet in a systematic and dedicated man-
ner. Therefore, in the first part of this work a suitable theoretical
framework is developed. Here, the simplification can be made
that only modes pertaining to the same field line couple, through
their high-n nature. This reduces the dimensionality of the prob-
lem by one, but at the same time does not pose any limitations on
the 3-D aspects of the instabilities.

One of the results of the theory is a system of coupled ordi-
nary differential equations that can be solved for an eigenvalue,
the sign of which determines whether the mode formed by the
corresponding eigenvector is unstable or not. The solution of
these equations, however, is something that has to be done using
numerical techniques, so to this end the numerical code PB3D
is developed. This stands for Peeling-Ballooning in 3-D, two
modes that are described well through high-n theory. PB3D can
treat the stability of various equilibrium codes such a VMEC and
HELENA in a modular way, is parallelized making use of the
message-passing interface (MPI) and is optimized for speed. The
code is verified making use of physical criteria and by compar-
isons with two other, well-established numerical codes that have
ranges of applicability bordering on that of PB3D. The first one,
MISHKA, is a general-n stability code for axisymmetric equilib-
ria, whereas the second one, COBRA, can treat general 3-D cases,
but only in the n→∞ limit, with a static edge.

The successful introduction of PB3D paves the way for a mul-
titude of potential applications concerning 3-D edge effects. It
can be investigated, for example, how many previous findings
concerning peeling-ballooning modes in axisymmetric config-
urations change or not when 3-D effects are introduced. The
theory of high-n stability of axisymmetric equilibria, for example,
in the past has shed light on the dynamics of ELMs, and how
this changes by including 3-D effects is a topic of interest. This is
true even more so as recently the relevance of ELM control has
risen due to the potentially dangerous behavior of ELMs in the
next generation nuclear fusion reactors. A strategy for controlling
them also intrinsically relies on applying 3-D resonant magnetic



vii

perturbations. The study of these effects with PB3D is planned in
the near future in the ITER Organization.

Before that, in this work, as a first concrete application, the
modification of the stability of the pedestal of aHigh-confinement
plasma equilibrium configuration by a toroidal field ripple is con-
sidered. These so-called H-mode configurations are character-
ized by a steep pressure gradient near the plasma edge, called the
pedestal, which increases the temperature and pressure attain-
able in the core. Therefore, they are often seen as vital in order to
achieve fusion. In practice, however, a degradation of the pedestal
size is often observed, due to 3-D modifications of the equilib-
rium, such as the periodic ripple in the toroidal magnetic field
due to the discreteness of the toroidal field coils. It was observed
here that the application of a toroidal ripple in the shape of the
poloidal cross section in the order of a percent, lead to a substan-
tial decrease in the highest possible pedestal pressure, in the order
of 30-40%. This substantiates good qualitative agreement with
experimental results, where degradations of similar magnitude
were observed.

ToonWeyens
2012 – 2016
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Chapter1
Introduction

The nitrogen in our DNA, the
calcium in our teeth, the iron in our
blood, the carbon in our apple pies

weremade in the interiors of
collapsing stars. We aremade of

starstuff.

Carl Sagan, Cosmos

Of all the limited resources that humanity fights over, the fossil fu-
els that traditionally cover most of its energy consumption often
pose the gravest issues. The fact stands that the unparalleled boom

Western economies experienced during and following the Industrial Rev-
olution in the last centuries, are for a very large part driven by traditional
cycles of exploration and development of deposits of coal, oil and natural
gas. Furthermore, the external costs of centuries worth of greenhouse gas
emissions are only slowly becoming internalized in global decision making.
To this end, traditional nuclear energy, where large and heavy ions are split
by neutrons in nuclear processes, can be instrumental in mitigating green-
house gas emissions, but ultimately it faces the same problems of scarcity
of resources, though on a slower scale; as well as the additional problems
of catastrophic accidents and of proliferation. Therefore, renewable energy
is often championed as an inexhaustible energy source, that suffers from
none of these disadvantages. However, attainable power densities are gen-
erally way below what is needed [Mac08] with worldwide consumption
additionally expected even to rise sharply [IEA]. Another power source is
needed.
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The answer could be found by looking at the stars, where nuclear fusion
processes occur. These are related to the nuclear processes employed in
current nuclear fission devices, but instead of breaking up heavy nuclei, light
nuclei are fused, in order to release large amounts of energy. The benefit
of being able to imitate on earth these processes, is that the fuel would be
virtually inexhaustible. The most feasible process envisioned on earth, for
example, is the fusion of deuterium and tritium, the two heavier isotopes
of hydrogen, into Helium [Fre08, Chap. 2]:

D+ T→ He+ n+ 17.6 MeV , (1.1)

where a neutron is liberated as well as 17.6 MeV. Deuterium can be filtered
out of regular water, while tritium, which is lightly radioactive, can be
formed through transmutation of lithium, abundantly available in the earth’s
crust, using the fast neutron. The major difficulty, however, is to overcome
the strong Coulomb barrier between the positively charged nuclei of these
two elements when getting them close enough together in order to fuse and
convert part of their combined mass for energy. In the interior of stars it is
the extreme pressure that unfailingly performs that job, but here on earth
one is bound to use even more extreme temperatures, typically of the order
of 100 million degrees Celsius. At these temperatures hydrogen is in the
fourth state of matter where all ions are stripped clean of their electrons,
called the plasma state.

Despite the formidable challenges of achieving these temperatures, sci-
entific efforts have been very dedicated. Bridged were even the fault lines
that firmly stretched across the globe when the drums of nuclear arms race
still marked the rhythm of the Cold War, Soviet scientists working side
by side with their Western counterparts.1 The road has been long, initial
optimism gave way to pessimism, which gave way to optimism again, and
research is now nearing the metaphorical doorway behind which can be
glimpsed a virtually inexhaustible source of energy, almost within reach.

This work has to be understood as a contribution in this grand research
corpus oriented towards a new energy source. It is situated in the study
of the stability of the hot plasma in the most popular confinement devices
that have been invented to lock it up, called the magnetic toroidal devices.
Naturally, any contact with a solid (or liquid, for the matter) confinement

1In the winter of 1969/1969, UK scientists visited their Soviet counterparts in Moscow
to verify their incredible announcement that they had reached temperatures of 1keV (more
than 10 million ◦C), using their newly-developed diagnostic device, called Thomson Scat-
tering [Pea+69]. This was a defining moment in favor of the tokamak, championed by the
Russians (see subsection 1).
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box will unrelentingly damage it at the temperatures of interest for nuclear
fusion, as well as degrade plasma confinement. Furthermore, as it consists
of charged particles, the plasma is capable of a very rich variety of physical
phenomena, so confining it in a stable way is a very tough question.

In the next section, some concepts necessary for the correct understand-
ing of the main problem are introduced, such as an explanation concerning
the toroidal devices mentioned already in the last paragraph as well as the
physical models employed. Afterwards, in section 1.2 the problem is situ-
ated properly as a well-defined area inside the big picture of the stability
of toroidal devices in which understanding is lacking. This paves the way
for the exact statement of the problem and a breakdown of the solution
employed to approach it in section 1.3. Finally, relevant research goals are
stated 1.4.

1.1 Introductory Concepts

1 - Toroidal
confinement
devices

As a possible solution to the issue of plasma confinement, toroidal con-
finement devices employ powerful magnetic fields to guide the charged
particles of the plasma along in donut-shaped fashion. In figure 1.1, a
so-called tokamak is sketched, which is an (quasi-)axisymmetric device,
meaning that the cross-section is an invariant of the toroidal angle (i.e. the
long way around the torus). However, non-axisymmetric toroidal devices
also exist, and some of the most popular variants are grouped under the
term stellarators.

Figure 1.1
Sketch of a tokamak,
a popular toroidal
confinement device2

Both types have their advantages and disadvantages3, but as their general
confinement strategy they all use a strong magnetic field that is generated
through the torus around which the particles move in spirals, called cy-
clotron motion, effectively tying them to the field lines while they are heated
to the blazing temperatures at which hydrogen isotopes can fuse, in the

2[source: IPP, Dr. Christian Brandt]
3See for example [Sta10, chap. 4] or [Fre08, sec. 6.6].
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order of hundreds of millions of Kelvin.4 The reason why tokamaks are
axisymmetric is because part of the confining magnetic field is generated
through a toroidal current induced through a transformer of which the
secondary winding is formed by the plasma, whereas the magnetic field
coils are placed around the torus in axisymmetric fashion. Stellarators, on
the other hand, create the entire magnetic field through complex 3-D coils.

The toroidal confinement scheme works well and its development is
furthest advanced compared to all other confinement schemes, but it is
subject to possibly violent and unstable behavior, triggered by the steep
gradients that inherently exist in such physical configurations. The magni-
tude of the temperature gradient, for example, can be appreciated by the
realization that just outside of the vessel containing the hot plasma, the
toroidal field coils that generate the strong guiding magnetic field have to
be cooled to temperatures close to the absolute zero, as they are made of
superconducting materials for large devices, due to the large currents they
support.

2 - Physical
models

To reach a thorough understanding of the behavior of plasma there
are multiple types of physical models that can be used. The particular
model employed here is called Magnetohydrodynamics (MHD) and it bears
resemblance to the model that results in the well-known Navier-Stokes
equations used in Fluid Dynamics (FD). Though MHD is inherently more
complicated than FD due to the long-range electromagnetic forces inherent
to moving electrical charges, as described through Maxwell’s equations,
the two models both share the benefits of using a fluid abstraction of the
behavior of the individual particles, allowing for efficient mathematical
descriptions—as opposed to a particle treatment that keeps track of the
individual characteristics of particles and is therefore more general but also
more complicated.5 The basic equations of MHD can be summarized by
evolution equations for density ρ, momentum ρv, pressure p and magnetic
field B [GP04].

It is important to note that, formally, the fluid treatment is only strictly
valid in certain regions of relevant parameter space. Yet, for nuclear fu-
sion plasmas, the results derived from MHD are often important outside
their strict region of validity, the cause of which is the potent anisotropy
introduced by the strong confining magnetic field, that in a sense splits the

4To put this number in perspective: The hottest of flames, which are also a form of
plasma, only reach temperatures in the order of thousands of Kelvin.

5Through statistical methods, fluid treatments can generally be formally derived from
the physically more correct particle treatments.
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behavior of the plasma into behavior parallel to the field lines and behavior
perpendicular to them. In fact, due to the importance of the magnetic field,
in this work the words parallel and perpendicular always implicitly refer
to it, unless stated otherwise. Whereas MHD is generally a poor model
for the parallel plasma dynamics, it does rather well for the perpendicular
dynamics, which is more important for the issue of confinement.

3 - Flux surfaces Toroidal magnetic field configurations lead to the very important con-
cept of flux surfaces. In short, as there are no magnetic monopoles, the
magnetic field lines trace out lines on nested surfaces in the torus. Except
for the degenerate case where the magnetic fields close exactly on them-
selves after a number of turns around the major axis of the torus, the flux
surfaces can be assumed to be covered by them.6 Therefore, it can be as-
sumed that a magnetic field line pertaining to a flux surface can never leave
it in ideal MHD, as for this resistive effects are necessary.

Subsequently, the whole concept of flux surfaces provides another way
of looking at magnetic toroidal confinement, as the plasma particles are
constrained to follow the field lines through their cyclotron motion and
hence stay in the flux surfaces.

Clearly, however, this is an idealized picture, as effects such as particle
drifts and non-linearities such as collisions between particles and particle-
field interactions indeed lead to movement across the flux surfaces. Move-
ment across flux surfaces can be modeled in a variety of ways, ranging from
a simple diffusion approximation, to fractional diffusion, to full-turbulence
descriptions. However, these are not in the scope of this work and hence-
forth, the concept of nested flux is used and the direction normal to the flux
surfaces is called the normal direction.

4 - Scale
analysis &
Linearization

From a mathematical standpoint, the equations obtained through fluid
treatments, such as MHD or ordinary FD, reduce to a coupled system of
differential equations, generally nonlinear and challenging to analyze di-
rectly. Therefore, one often uses the complementary approaches of scale
analysis and linearization of said equations. The former technique is geared
towards getting the most out of an analysis while using the least compli-
cated means possible, by identifying the dominant terms in the equations,
so that increasing accuracy comes at additional cost. In phenomena that
vary slowly relative to light speed, for example, the current displacement

6The question of whether they are covered ergodically can be analyzed through so-called
KAM theory, named after the initials of its designers; see for example [LL83].
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term in Maxwell’s equations can be neglected. Furthermore, a parameter
can be introduced, to benefit important terms for a certain class of problems
and disregard the others, as is done in chapter 3. The latter technique, on
the other hands, gets rid of non-linearities by looking at small perturba-
tions of steady-state situations, equilibria, the advantage of which is that it
allows one to tap into the vast reserve of mathematical techniques for linear
models, a very mature subject.

Specifically, in this work, the perturbations (subscripts 1) of equilib-
ria (subscripts 0) are described using the perturbation vector ξ (r, t) as a
function of time t and space r, defined through the relation

dξ

dt
= v1 , (1.2)

where v1 (r, t) is a small perturbation of the velocity v (r, t) of the plasma,
superimposed on the equilibrium velocity v0 (r):

v (r, t) = v0 (r) + v1 (r, t) , (1.3)

where for the static equilibria chosen here, v0 = 0. Employing these plasma
perturbations, the MHD equations can be combined into a fluid equivalent
of Newton’s second law:

ρ0
∂2ξ

∂t2
= F

(
p1 (ξ) ,B1 (ξ) , ρ1 (ξ)

)
, (1.4)

where the force operator F depends on the perturbed pressure, magnetic
field and density, but not on time.

5 - Normal
Modes & Eigen-
values

For equations such as equation 1.4, an additional mathematical tech-
nique called normal mode analysis is of interest, where one looks at pertur-
bative motion resulting from a harmonic excitation, described through a
complex phase as:

ξ (r, t) = ξ (r) e−iωt , (1.5)
where in the remainder of this work, the time-invariant ξ on the right-
hand side is employed, but possible confusion concerning the symbols can
unequivocally be avoided by explicitly stating the independent variables.

As the term normal implies, the results for harmonic excitations of differ-
ent complex frequenciesω are decoupled for linear systems and therein lies
the strength of the approach: each normal mode is orthogonal to the others
and can be investigated individually. This then leads to the familiar concept
of eigenvalues and corresponding eigenvectors through the translation of
the time-derivatives into multiplications by factors iω. In particular, as the
order of the time-derivative in equation 1.4 is two, a factor −ω2 appears.
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6 - Extended
energy principle

A final ingredient necessary is the Extended Energy Principle [GP04,
sec. 6.6], which uses normal modes of ideal linear MHD to treat toroidal
devices as the union of a plasma region surrounded by a vacuum that is
supposed to decay at infinity. Here, ideal implies that there are no loss-terms
and linear refers to the linearization process mentioned above. The surface
between plasma and vacuum, also called the edge, can in principle support
a jump in the tangential magnetic field through a skin current. Note that
the perpendicular magnetic field is zero at the surface, as the magnetic
field lines have to lie in magnetic flux surfaces by definition. As the name
implies, the Extended Energy Principle, through the combined system of
plasma and vacuum, is an extension of the Energy Principle introduced in
[Ber+58], which at its turn can be understood as a particular way of stating
stability theory, similar to the way it is done in Quantum Mechanics.

1.2 Situation

1 - Linear ideal
high-nmodes

The study of stability of plasmas, being a subject of considerable impor-
tance due to the potential for (costly) damage to reactor vessel walls from
being exposed to plasma of temperatures far above sublimation tempera-
tures of solids if confinement is not perfect, has received ample interest.

However, in the general stability picture there exists an important pos-
sibility of using a promising different approach in the subclass of so-called
high-n modes, which can be described appropriately through ideal lin-
ear MHD. High-nmodes, also called short wavelength modes, are normal
modes described through perturbative analysis of MHD equilibria, where
a difference of scale is introduced through this large number n� 1. This
means that the modes have a spatial structure that varies quickly as com-
pared to the length scales of the equilibrium. However, basic stability con-
siderations lead to the observation that for rapidly varying modes to be
unstable, they should nevertheless vary on equilibrium scales along the
magnetic fields, leading to the concept of fluted modes [Fre87, sec. 8.11],
illustrated in figure 1.2.

The main reason why the stability of high-nmodes is important, is the
fact that they are angularly localized and therefore have low inertia, so that
they are easily excited by the sources of free energy in the plasma (the steep
gradients mentioned previously). Simultaneously, they can have a rather
extended radial mode structure throughout the plasma, so they are able to
couple energy from the hot core to the (comparatively) cold walls [GJ68,
sec. 7].
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Figure 1.2
Sketch of a fluted
perturbation of a
toroidal surface,
elongated along
magnetic field lines
that spiral around
the torus, in this case
they go once round
toroidally for every
poloidal turn.

The new approach in the high-n stability picture in which this work is
situated will be the topic of the next section. However, before getting to it,
the situation is explored in more detail here, from a historical point of view.

2 - Eikonal
mathematics

In the framework of linear ideal MHD the separation of scales can be
expressed by use of an eikonal formulation for the perturbation ξ (r) of the
form [CHT79]:

ξ = ξ̂ exp (inS) , (1.6)

where n� 1 and S (r) is the eikonal, defined through the relation:

B · ∇S = 0 , (1.7)

where B (r) ≈ B0 (r). Indeed, employing this assumption, the parallel and
perpendicular dynamics enter at different orders:

∇‖ξ =
(
∇‖ξ̂

)
exp (inS) ∼ O (1) ,

∇⊥ξ =
(
∇⊥ξ̂+ in∇⊥S · ξ̂

)
exp (inS)

≈ n
(
i∇⊥S · ξ̂

)
exp (inS) ∼ O (n) ,

(1.8)

where the subscripts ‖ and ⊥ refer to the parallel and perpendicular com-
ponents, respectively.

When, additionally, certain judicious orderings are assumed for the
envelope function ξ̂ as a function of the perpendicular coordinates, the
separation of parallel and perpendicular derivatives of the eikonal carries
on to a separation of the ideal linear MHD stability equations. The lowest-
order equation then contains information of only the eigenvalues λ = ω2

that appear through the use of the normal modes as explained at the end of
section 1.1. It can then be understood that the stability of the normal modes



Section 1.2 : Situation 9

is determined by the sign of λ, a positive λ implying an infinitely oscillating
solution through a realω and a negative λ an exponential solution through
an imaginaryω. Finally, the envelope is determined by the higher orders.

3 - Ballooning &
Peelingmodes

Originally, for axisymmetric bulk cases—meaning modes that are far
from the plasma edge and pertain to equilibria that have a symmetry in the
toroidal direction7—it was found that assuming a certain8 ordering leads
to Gaussian envelope shapes [CHT79, eq. 37]. In later work, the important
edge situation was approximated using a different9 ordering, leading to
Airy functions for the envelope instead of Gaussians [Con+98, eq. 59]. By
this is meant that the edge of the plasma itself can be perturbed, which
implies a perturbation of the surrounding system. The modes described
through these assumptions are often referred to as ballooning modes and
the lowest-order equation describing its stability as the ballooning equation.

Independently of these ballooning modes, in [Lor75], a whole differ-
ent class of modes was described, which have a different structure10 and
crucially depend on the existence of a rational surface just outside of the
plasma edge, meaning a flux surface where q = m

n . For these modes, called
peeling modes, edge effects are clearly always important.

The subject of peeling as well as ballooning modes is at the core of this
work and explored in more detail in the next chapters.

4 - 3-D Eikonal
approach

Though the ballooning modes of the previous subsection were investi-
gated in axisymmetric equilibrium situations, general considerations con-
cerning the eikonal approach are valid in 2-D (i.e. axisymmetry) as well as
in 3-D. In [Cor82a], for example, results are given for general 3-D cases.
Subsequently, numerical codes such as COBRA [Sán+00] and a specific
module of TERPSICHORE [And+91] were designed, that can solve for
the ballooning stability of the flux surfaces of 3-D configurations using the
eikonal approach.

In contrast, the peeling-theory put forth by [Lor75] was already inher-
ently 3-D, but thanks to the strong normal localization of the modes, the
resulting equations are less involved than for ballooningmodes. These equa-
tions correspond, in fact, to an extendedMercier criterion, which is a simple
criterion for (in)stability of interchange modes making use of quantities

7Note that in this work the term “axisymmetry” always refers to the equilibrium of which
stability is calculated—the perturbations are generally 3-D.

8The normal dependence of the mode envelopes are to vary on the scale ∼ O
(
n1/2

)
.

9The normal variation is then on the scale ∼ O
(
n2/3

)
.

10The normal variation is now extra fast, on the scale ∼ O
(
n2
)
.
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integrated over the flux surfaces [Mer60], similar to the Rayleigh-Taylor
instability in non-magnetized fluids.

5 - Troubling
eikonals

Apart from its apparent theoretical utility, however, there are three seri-
ous problems with using eikonal theory.

First of all, though it is not very difficult to design an acceptable eikonal
that satisfies the necessary requirement that B · ∇S = 0, the condition for
periodicity in poloidal and toroidal angles is then lost in general. Math-
ematical tools exist to reintroduce periodicity. For example, the eikonal
representation can be interpreted as an integral transform, similar to the
Fourier and Laplace transforms, that removes the periodicity constraints of
physical solutions, so that on the infinite domain the mathematical problem
is simplified [HN90]. However, for the inverse transformation, called the
ballooning transform, to exist, the requirement is placed on the solutions
in ballooning space to have limited bandwidth in the normal direction. In
other words, for any given mode number n, above mode amplitudes ξ̂ need
to be nearly constant across neighboring rational flux surfaces.

Apart from these considerations concerning the reconstruction of the
physical solution, the ability to have more arbitrary mode shapes of the
envelope is lost when an eikonal description is employed with an assumed
ordering of the envelope. This is a very important limitation since the
theoretic cases are but limit cases. Amode can, for example, exhibit features
of both ballooning and peeling modes, but does not necessarily have to be
one of the two.

Finally, the correct treatment of the modes at the plasma edge is another
element that requires a more elaborate study than the theoretical order-
ings described above that lead to mode envelopes of the shape of the Airy
function. Also here more general possibilities are required.

6 - Fourier
theory

As an alternative, in order to avoid the difficulties associated with the
eikonal treatment described above, general Fourier modes can always be
used. The price to pay in this case is the increase of complexity11 of the
resulting equations. In particular, the neat decoupling of the problem in
an equation that describes the eigenvalue and higher-order equations that
describe the envelope is then impossible. Instead, the theory yields coupled
equations for the different flux surfaces, however still containing an eigen-
value. As a consequence, analytic solutions of these equations becomes

11The term complexity refers to “having many components” and is not necessarily related
to the notion of complicated that refers to “difficulty”, though in this case it probably is.
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difficult and one has to resort to computational techniques.

7 - Axisymmetric
ELITE

The Fourier treatment, making use of the extended energy principle,
combined with numerical solutions constituted the philosophy behind the
numerical code ELITE [Wil+02] that, though still employing the condition
of axisymmetry of the equilibrium of which it calculates stability, does away
with the eikonal of the theoretical approach and uses Fourier modes instead
for the calculation of high-n stability. As a consequence of using Fourier
modes, the results that can be described using ELITE are of a more general
nature, though the ballooning and peeling (un)stable regimes can still be
identified.

ELITE has contributed to the explanation of a variety of phenomena in
axisymmetric toroidal configurations, such as identifying certain types of
Edge LocalizedModes (ELMs) as a periodic cycling between the two regimes.
ELMs are periodic outburst of energy regularly observed in the so-called
High-confinement (H-mode) regimes12 of modern tokamaks, which can
be approximated using axisymmetry, and their control is of great impor-
tance, as next-generation devices they may be quite detrimental to both the
confinement and the device [Loa+14]. In fact, a promising tool to control
ELMs is the usage of helical windings called perturbation coils, which lo-
cally break axisymmetry through resonant magnetic perturbations (RMPs)
and thus driving the ELMs unstable before they have a chance to grow big
[Eva+06]. Ironically, much of the research concerning this is done using
axisymmetric codes, while their utility depends on them being inherently
3-D.

1.3 This work: A different approach

The new approach in the high-n stability picture mentioned in the begin-
ning of the previous section can now be specified further. It is situated in
the general 3-D high-n ideal linear MHD stability valid for edge situations.

Part of this approach, as explained in the previous section, lies in not
using an eikonal treatment, as periodicity is a nontrivial issue; as they are
not generally valid near the edge of plasmas; and since for them to be useful,
a certain ordering in the normal localization of the normal modes must be
assumed. In this work, as in the ELITE philosophy, a Fourier description

12The H-mode was a great improvement compared to the previous L-mode (L-mode)
regime, and is nowadays seen as a necessary condition for success.
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Table 1.1
Situation of current
work (in gray) within
previous high-n
work. Whereas bulk
treatment are only
valid far from the
edge, edge treatments
are free to move it.

2-D equilibrium

bulk edge

eikonal theory [CHT79]
eikonal theory [Con+98]
Fourier ELITE [Wil+02]

3-D equilibrium

bulk edge

eikonal theory [Cor82a] Fourier theory [Wey+14]

eikonal COBRA [Sán+00] Fourier PB3D [Wey+16]

of the modes is used instead. This enables the theory to take into account
correctly the influence of edge effects and surrounding vacuum. A second
part of the approach used in this work, and in contrast with ELITE, is
that the entire treatment is done in 3-D. Therefore, when the equilibrium
configurations are restricted to axisymmetry, the domain of validity of
ELITE is recovered, but it is much wider in general. Table 1.1 gives an
overview of this work in relation to previous high-n work.

Before information concerning the work plan is stated in the subsections
2, 3 and 4 below, it is important to look at the justification and motivation
in subsection 1. The work described in the work plan is done as the doc-
toral project of the author, supervised by prof. Dr. Raúl Sánchez from the
Universidad Carlos III de Madrid and prof. Dr. Guido Huijsmans from
the Eindhoven University of Technology, but part of the work is performed
at the ITER organization at Cadarache, in collaboration with Dr. Alberto
Loarte. Furthermore, prof. Dr. Luís García from the Universidad Carlos III
de Madrid acts as an additional supervisor. Finally, in subsection 5, some
short information is given about other codes of interest, some of which are
referred to later in this document.

1 - Justification
&motivation

As explored in table 1.1, the treatment of 3-D edge situations is indeed
the last piece missing in the high-n picture, probably due to the tedious
work it requires. But clearly, the inherent aesthetic beauty of completing a
puzzle is not the reason why this research is important. However, beside the
fact that unknown topics should be investigated before they are concluded
to be important or not, there are aspects of 3-D edge high-n stability that
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result in expected relevance.

First of all, it should be recalled that peeling-ballooning modes, de-
scribed through edge high-n theory, are of interest since they are easily
excited but have the capacity for detrimental coupling of hot core power to
the cold device walls. Indeed, the results from axisymmetric codes hint that
the stability boundaries are clearly relevant to phenomena such as ELMs.
However, there are many non-axisymmetric effects, such as the helical per-
turbation coils that deliberately break axisymmetry in order to control these
ELMs, ferritic Test-Blanket modules (TBM) for tritium breeders and toroidal
field ripple due to the discreteness of the toroidal field coils. As a side note
it should be stated that, generally, the further away from the plasma core
and the closer to the plasma edge, the more important 3-D effects become
as the axisymmetric approximation holds less and less.

Apart from the configurations with imperfect or broken axisymmetry,
there is also the very important class of inherent 3-D configurations, such
as stellarators, that needs full 3-D studies. It is clear, also, that these studies
too must include the effects of the edge, not only for the peeling modes
that are inherently dependent on the detailed edge situation through the
presence of an important rational surface just outside the edge, but also for
edge ballooning modes, that can be modified by the edge.

Note that these two aspects can be thought of as moving in the vertical,
respectively the horizontal direction in table 1.1, towards the bottom-right.

2 - High-n 3-D
edge theory

The 3-D treatment pursued in this work is performed by not making
the common assumption of axisymmetry on the plasma equilibrium whose
stability is investigated. This then leads to more involved expressions, re-
lying on tensorial calculus in curvilinear coordinates, as opposed to the
pseudo-Cartesian treatment that can be applied to 2-D equilibria. However,
by employing a modified flux coordinate system, which will be explained
in the next chapter, as well as the high-n assumption on the modes, the
anisotropy introduced by the magnetic field lines can be readily exploited
in order to reduce the dimensionality of the problem by one. This means
that, perhaps surprisingly, the final problem to be solved is mathematically
of the same complexity as the axisymmetric problem. Actually, it just a
consequence of the fluted nature of the modes.

Deriving this high-n 3-D edge theory is the first major task of this work,
and it is presented in chapter 3.
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3 - the PB3D
numerical code

A suitable result of the theoretical derivations of the 3-D ideal linear
MHD stability will consist of a coupled set of ordinary differential equations
of second order, containing an eigenvalue. The solution thereof is done
using numerical techniques, for the equilibrium configurations provided
by certain equilibrium codes. A new numerical code PB3D, which stands
for Peeling-Ballooning in 3-D, is developed, that performs this.

It is then important to verify whether the PB3D code performs its task
well. This is done by comparing results with established codes, both for the
stability of an axisymmetric equilibrium as well as a 3-D equilibrium.

Developing and verifying PB3D is the second major task of this work,
and it is presented in chapter 4.

4 - 3-D edge
application

The PB3D numerical code can then be employed for a great deal of
situations, as stated above. In this document a first application is explored.
It is chosen to investigate what is the influence of a toroidal field ripple
on the ideal linear edge stability, as this is quite an important and realistic
problem.

Providing a first real application of PB3D is the third major task of this
work, and it is presented in chapter 5.

5 - Other codes Finally, it should be noted that there are also a large zoo of numerical
codes that investigate MHD stability in more general situations, without
employing the high-n assumption, referred to here as general codes. Gen-
eral codes enjoy the benefit of being able to investigate the entire spectrum,
where high-n codes are specifically tuned to the unstable side, as it are the
unstable modes that behave according to it. This generality can also make
them less fast than codes such as PB3D that are specialized for the spe-
cific goal of investigating instabilities, like the relevant peeling-ballooning
instability. The following short and not exhaustive list of other codes is
given:

• CASTOR is an axisymmetric linear code that additionally contains
non-ideal resistive effects [Ker+98]. It uses the Galerkin method to
approximate the spectrum to arbitrary precision.

• MISHKA is related to CASTOR that has been much optimized for
speed but that does not include resistive effects [Mik+97].

• CAS3D is an extension of CASTOR for non-axisymmetric equilibria,
used extensively for the design of stellarators [Sch93].
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• TERPSICHORE made use of the Cray architecture of the 1990’s to
perform non-axisymmetric linear stability analysis [And+90].

• JOREK does not employ the scale separation between equilibria and
their stability, but instead evolves the MHD equations, in non-linear
fashion [HC07]. The stability of the configuration is then expressed
by a profile that evolves to a stable configuration. Furthermore, it has
the advantage of being able to simulate the non-linear regimes that
occur afterwards.

1.4 Research Goals

The information from the previous sections leads directly to some questions
that are to be answered in the scope of this work: The overall research goal
that motivates this work can be stated as follows:

Main Issue Assess the importance / the effect of 3-D effects onMHD stability in
magnetic fusion devices.

In order to address this, the construction of a theoretical framework
will be investigated, based on the concept of high-nMHD stability:

Question 1 How can the ideal high-nMHD stability be theoretically described
for fully 3-D equilibria while allowing for edge effects?

Having finished this endeavor, the next step will be to build a code,
which will be called PB3D (Peeling-Ballooning in 3-D), that solves the
equations resulting from the theory in a numerical way:

Question 2 What is an efficient way of implementing this stability theory in a
numerical code?

Question 3 How does PB3D compare to other codes in terms of verification and
validation?

Finally this numerical implementation of the 3-D stability theory is to
be applied to an important example of axisymmetry breaking in a tokamak,
as a first proof of principle:

Question 4 What is the influence of a toroidal ripple on the stability boundaries
of a realistic tokamak, from the ideal linear stability point of view?

Question 1 is answered in chapter 3, questions 2 and 3 in chapter 4 and
question 4 in chapter 5. Finally, proposed for further work, the following
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examples can then be given:

Suggestion 1 Apart from toroidal ripple, what happens with themodification
of ideal linear edge stability by other kinds of 3-D perturbations, such as RMP coils?
Specifically, what is the importance of the actual shape of the 3-Dmodification?

Suggestion 2 Are there any extra (un)stable regions of parameter space that
exist for 3-D equilibria, similar to the regions defined by peeling and ballooning
stability for axisymmetric cases?

The numerical tool PB3D will provide a tool specifically tailored to
attack these problems.

1.5 Document Structure

This introductory chapter is followed by chapter 2, which gives a very con-
cise overview of the relevant known theory in the field, up to an explanation
of the energy principle.

Afterwards, chapter 3 contains the first original work, treating the theory
concerning 3-D high-n ideal linear MHD for Peeling-Ballooning normal
modes in more detail. As stated in the previous section, a suitable result of
this theory is a system of ordinary differential equations of second order
that can be solved for an eigenvalue which corresponds to the time behavior
of the perturbation.

Subsequently, in chapter 4, the numerical solution of this system of
equations is discussed through the new code PB3D, including the technique
of discretization used and the general strategies employed. Also, the issue of
verification is treated, through comparison to established numerical codes
as well as physical considerations.

After this, chapter 5 is concerned with the first application of PB3D
to a real application of physical interest, namely the investigation of the
modification of the ideal linear edge stability boundary due to a toroidal
field ripple in a realistic tokamak geometry.

To conclude, the work is evaluated and discussed shortly in chapter 6.
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Chapter2
Overview of Theory

To describe the behavior of a hot plasma theoretically, many different
degrees of abstraction can be used, each with its own assumptions
and simplifications, which result in a certain complexity and domain

of physical validity.
Of interest to this work is the Magnetohydrodynamical (MHD) view-

point, which treats plasma as a fluid in a way similar to that used in ordinary
fluid dynamics. More specifically, the extended energy principle is used,
which is built from MHD theory. This will therefore be the end point of this
chapter. To get a more complete overview, however, the steps that lead to
the theory of MHD are also worth having a look at, starting from the most
elementary approach where the plasma particles are described individually,
and building up abstraction step by step, making assumptions on the way,
and necessarily shrinking the domain of validity. Note that, clearly, there is
no pretension of rigor, as the only goal is to give an overview which can be
helpful to understand the rest of this work.

In a first section, the steps leading from a fundamental particle picture
of the plasma to a statistical one through the Boltzmann equation are con-
sidered. Afterwards, in section 2.2, the topic of interest is the mathematical
procedure of taking moments to perform averaging of velocities in order to
get to a fluid description of the plasma. Subsequently, section 2.3 treats fur-
ther simplifications that allow for a description of the plasma with a single
fluid, such as the description with MHD. Finally, using MHD, in section
2.4, the extended energy principle is explained.
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2.1 The Boltzmann equation

When a gas is heated sufficiently, at some point it experiences a change of
state, transitioning to plasma. Ideally, in a plasma all the atoms are stripped
clean of their electrons. However, in contrast to these so-called hot plasmas,
there exists a continuum in the degree of ionization, described through the
Saha ionization equation which results from quantum mechanics [Fri08].

1 - Liouville’s
theorem

The isolated whole ofN plasma particles, withN an arbitrary number,
can be described using Hamiltonian mechanics through Liouville’s theorem,
which works in phase space [Har04]. This is the mathematical space that
consists of 6N+ 1 dimensions: 3 for the physical position of each particle
in space, 3 more for its velocity, and 1 for time. Using the concept of the
distribution function fN for N particles that describes the probability of
finding a particle at a certain position and with a certain velocity, denoted
by

fN (r1, r2, . . . rN, v1, v2, . . . , vN) , (2.1)

Liouville’s theorem describes the preservation of this distribution function
in time:

dfN

dt
=
∂fN

∂t
+

N∑
i=1

(
vi · ∇rif

N +
∂vi
∂t
· ∇vif

N

)
= 0 , (2.2)

where the subscript denotes the variables in which the nabla operator works.

2 - BBGKY hier-
archy

To reduce complexity, integrations are done on the complete (6N+ 1)-D
distribution function. To this end, the reduced distribution functions

fr (r1, v1) =

∫
fN dxr+1 dxr+2 . . . dxN dvr+1 dvr+2 . . . dvN , (2.3)

are introduced, that describe the probability of finding r particles in a partic-
ular point of phase-space. The so-called BBGKY-hierarchy is then followed,
which is named after its inventors. It is called a hierarchy as through per-
forming integrations on the full distribution function fN, it yields equations
that link the ascending reduced distribution functions fr to each other.
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3 - Boltzmann
and Vlasov
closure

To be of a practical form, therefore, this system needs to be cut at some
point and here a first assumption is made. This procedure is called closure
and the result is an equation of the form

∂f

∂t
+ v · ∇rf+ a · ∇vf =

(
∂f

∂t

)
coll

(2.4)

where now the superscript 1 is left out in f ≡ f1 and a is the accelera-
tion. The right-hand side describes the force due to collisions and multiple
forms of various exist of complexity are possible. This equation is called the
Boltzmann equation. Note that not considering higher orders of reduced
distribution functions implies that the influence a particle has over another
is limited, that they behave rather independently.

Finally, if the system can be assumed to be collisionless, the Boltzmann
equation reduces to the Vlasov equation:

∂f

∂t
+ v · ∇rf+ a · ∇vf = 0 . (2.5)

The theory of the Boltzmann and Vlasov equations is often called kinetic
theory as velocity space is still an independent variable. These equations
much simpler than the original Liouville equations, but they are still (6+ 1)-
dimensional. This means that there is a wide area of applicability where
many simplifications can still be made.

2.2 Fluid descriptions

1 - Takingmo-
ments

To further simplify the kinetic description of the plasma, where velocity
is still an independent variable, mathematical moments of the distribution
function f are taken [Bel08]. These are integrals over velocity space of
powers of the velocity. The first few are, for example, the particle density
nα and the average velocity uα:

nα =

∫
fdv , (2.6)

uα =

∫
vfdv , (2.7)

but there exist infinitelymany. Not all, however, have clear physicalmeaning
such as the two above. Note that now the subscript α has been used to avoid
confusion with the reduced distribution function terminology of order
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i: α refers to a particular species here, either a particular ion type or the
electrons.

Integrating the moments of the Boltzmann or Vlasov equation over
velocity space, an infinite number of equations is yielded, each connecting
a particular moment to moments of a higher order, similarly to the BBGKY
hierarchy, where equations coupled reduced distribution functions of dif-
ferent orders. Again, to be practical, these equations have to be cut at some
point, and closed using physical assumptions. The result is then a series of
equations that describe the time-evolution of the different moments of the
distribution function.

2 - Deviations
away from
equilibrium

In practice, closure is normally done after taking the moments of just 1,
v, v2, yielding a continuity equation, a momentum equation and an energy
equation, respectively. Furthermore, splitting off the average part of the
velocity, which results in quantities vα = v− uα, is often useful to get to
a closure formulation as it helps to consider deviations fi (i > 0) of the
distribution function away from the Maxwellian form [GP04]:

f0α ∝ exp

(
−
mαv

2
α

2kTα

)
, (2.8)

where k is the Boltzmann constant and mα is the mass and Tα the tem-
perature of species i, defined to be proportional to the average value of
vα:

Tα =
mα

3k

〈
v2α
〉
. (2.9)

Since the Maxwellian distribution is the state of a system at thermal
equilibrium, as is known from statistical physics, it is the state towardswhich
a distribution function tends to evolve. Considering the deviations thereof
are therefore of physical interest for closure. This is where the collision force
comes into play, as appropriate expressions must be designed to link these
to lower-order moments. The most known set of equations is called the
Braginskii equations [Bra65], and they are used often in numerical codes,
such as B2 [RBB05]. Note that in order for the plasma to evolve towards the
Maxwellian equilibrium, its particles must experience sufficient collisions
as a necessary relaxation process.1 In other words: fluid descriptions imply
slow time scales or high-collisionality.

1As stated in chapter 1, this is not completely true: In the case of magnetic nuclear fusion
plasmas, the anisotropy introduced by the strong magnetic field tends to take the role of
collisions to thermalize the plasma.
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To recapitulate, the end result of taking moments of the Boltzmann or
Vlasov equation, combined with appropriate closure to limit the number
of equations, sets of equations can be obtained that describe the plasma in
terms of its individual fluids or species, such as electrons and various ion
types. These take the form of evolution equations that describe the time
evolution ofmacroscopic plasma quantities such as density, momentum and
temperature, depending on the closure. Often, however, having multiple
species in the description of the plasma contains still a lot of information.
In this case, there exists the possibility to simplify things and to go to a
single-fluid description, of which MHD is one very often used possibility.

2.3 Magnetohydrodynamics

A single-fluid description can be derived from a multi-fluid description by
making additional assumptions. More exactly, another assumptions ismade
considering the length scales in the plasma [GP04], on top of the assump-
tions of independent particles for the Boltzmann or Vlasov description of
section 2.1 and of slow time scales or high-collisionality for the multi-fluid
models of section 2.2.

1 - Quasi-neutral
ideal plasma

In MHD, the length scales considered must be of sufficient size for the
plasma to be quasi-neutral; i.e. they must be macroscopic. By this is meant
that any local imbalance in the ratio between positive charges due to ions
and negative charges due to electrons, at least for non-exotic plasmas, is
quickly balanced by themovement of the agile small electrons. Furthermore,
this also means that the cyclotron motion of charged particles around a
magnetic field line, described in section 1.1 is averaged out in time onMHD
time- and length scales.

Subsequently, in this work ideal MHD is used, which is a statement
about the conductive properties of the plasma. It means that the plasma
resistivity is so low that any resistive effect unfolds on time scales much
slower than the ones interested in. At high temperatures, this is an easy
condition to satisfy, as plasma resistivity drops to very low values.2

2So low, in fact, that it seems to be next to impossible to achieve plasma fusion with only
Ohmic heating; i.e. heating that that occurs by driving a current through the plasma.
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2 - MHD equa-
tions

The resulting system of ideal MHD equations now take the much more
manageable form:

∂ρ

∂t
+∇ · (ρv) = 0 , (2.10)

ρ

(
∂v

∂t
+ v · ∇v

)
+∇p− ρ∇Φ−

1

µ0
(∇× B)× B = 0 , (2.11)

∂p

∂t
+ v · ∇p+ γp∇ · v = 0 , (2.12)

∂B

∂t
−∇× (v× B) = 0 , (2.13)

with Φ the gravitational potential, γ the adiabatic constant, µ0 the vac-
uum permeability and B the magnetic field. Furthermore, the density ρ,
momentum ρv and pressure p are average values of all the plasma species:

ρ =
∑
α

nαmα , (2.14)

ρv =
∑
α

uαnαmα , (2.15)

p =
∑
α

pα ≡ nαkTα , (2.16)

withmα,nα,uα and Tα defined in the previous section. Note thatMaxwell’s
equations were used in the closure, as can be seen in the appearance of terms
such as 1

µ0
(∇× B).

2.4 The extended energy principle

1 - Normal
modes

The ideal MHD model is now complete and ready to be used. This
last section describes one of its applications, the extended energy principle.
As stated in chapter 1, the extended energy principle is constructed from
through performing normal mode analysis on the linearized ideal MHD
equations. This means that the plasma is assumed to be perturbed from an
equilibrium state by harmonic perturbations ξ defined as

− iωξ = v1 , (2.17)

whereω is the (complex) frequency of the normal mode and v1 is the first-
order perturbation of the equilibrium plasma velocity v0, which is zero for
stationary equilibria. The imaginary factor comes from the derivative of
the complex exponent of the normal mode ∼ e−iωt.
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2 - Linearization The linearization of the MHD equations then results from assuming the
perturbed quantities to be much smaller than the equilibrium quantities
(except for the velocity for stationary plasmas) and neglecting products of
perturbed terms. Equations 2.10, 2.11 and 2.13 then reduce to [GP04]:

ρ1 = −∇ · (ρ0ξ) , (2.18)
B1 = ∇× (ξ× B0) , (2.19)
p1 = −ξ · ∇p0 − γp0∇ · ξ , (2.20)

(2.21)

which can be filled in into the linearized version of equation 2.11, yielding
a form of Newton’s second law, namely equation 1.4 for normal modes:

− ρ0ω
2ξ = F

(
p1 (ξ) ,B1 (ξ) , ρ1 (ξ)

)
, (2.22)

with the force operator defined as

F ≡ −∇p1 −B0 × (∇× B1) + (∇× B0)×B1 +∇Φ0∇ · (ρ0ξ) . (2.23)

With some algebra, it can be shown that this force operator is Hermitian:∫
η∗ · F (ξ)dV =

∫
ξ · F (η∗)dV , (2.24)

where the integral runs over the volume of the system. This Hermiticity is
an expression of the fact that there are no loss terms in ideal MHD.

3 - Rayleigh
quotient

Using the property ofHermiticity, theRayleigh quotientΛ can be defined
as:

Λ ≡ δW
K

, (2.25)

where δW is the perturbed potential energy of the system and K is related
to the kinetic energy:

δW ≡ 1

2

∫
ξ∗ · F (ξ)dV , (2.26)

K ≡ 1

2

∫
ρξ∗ξdV . (2.27)

It can be shown that the stationary values of the Rayleigh quotient are equal
to the square of the complex normal mode frequencyΛstat = ω

2. Note that
they have to be real.
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Complete expressions for the quantities introduced here are given in
chapter 3, for the extended energy principle, where the system consists of
a toroidal plasma of general shape, connected to a surrounding vacuum
through the plasma edge, on which a skin current is allowed run. The
advantage of using a variational principle such as the Rayleigh Quotient
is then that the interface conditions at the plasma edge are automatically
satisfied.

The extended energy principle is one of the foundations of this work.
In the next chapter, a theoretical exposition follows.
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Chapter3
3-D EdgeTheory

The content of this chapter was published in Physics of Plas-
mas by T. Weyens, R. Sánchez, L. García and A. Loarte under
the nameThree-dimensional linear peeling-ballooning theory
in magnetic fusion devices [Wey+14]. It is reproduced here,
with the permission of AIP Publishing. The typography has been
adapted to the style of this document.

The creation of ideal linear high-n theory for 3-D edge toroidal mag-
netic configurations is the first major task of this work. The deriva-
tion is described in this chapter. Use is made of the extended energy

principle, where the perturbation is described through Fouriermodes in the
angular variables. The flutedness of the modes then leads to the condition
nq −m ∼ O (1), while both n � 1 andm �, which is used to order the
terms of the potential and kinetic energy.

An important consequence of the flutedness of the perturbation is that
only modes that correspond to the same field line can be assumed to couple,
so that the result for different field lines can be calculated independently.
This reduces the complexity of the mathematical problem so that ultimately
it is of the same order as for the axisymmetric case.

To find the normal mode eigenvalues and eigenvectors, use is thenmade
of the Rayleigh-Quotient, which is defined as the ratio between the per-
turbed potential energy and the kinetic energy, and the stationary values
of which correspond to the Eigenvalues. In a first step the perturbation
is decomposed in the normal direction (to the flux surfaces), the parallel
direction (to the magnetic field) and the geodesic direction, perpendicular
to both, and the parallel and geodesic components of the different Fourier
modes are minimized as a function of the normal components. Euler mini-
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mization is then employed to calculate the minimized energy, with the end
result being a coupled set of second-order ordinary differential equations
in the normal components of the Fourier modes of the perturbation that
contain an Eigenvalue. This has to be solved numerically.
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Abstract

Ideal Magnetohydrodynamics (MHD) theory is extended to
fully 3Dmagnetic configurations to investigate the linear stabil-
ity of intermediate to high-n peeling-ballooning modes, with
n the toroidal mode number. These are are thought to be im-
portant for the behavior of Edge Localized Modes (ELMs) and
for the limit of the size of the pedestal that governs the high
confinement H-mode. The end point of the derivation is a set
of coupled second order ordinary differential equations with
appropriate boundary conditions that minimize the perturbed
energy and that can be solved to find the growth rate of the per-
turbations. This theory allows of the evaluation of 3D effects
on edge plasma stability in tokamaks such as those associated
with the toroidal ripple due to the finite number of toroidal
field coils, the application of external 3D fields for ELM con-
trol, local modification of the magnetic field in the vicinity of
ferromagnetic components such as the test blanket modules
(TBMs) in ITER, etc.

3.1 Introduction

The magnetohydrodynamic (MHD) model is inherently limited in scope
and applicability by the strong assumptions behind it. Yet, despite its relative
simplicity, it has been shown to be surprisingly applicable, mainly due to the
strong anisotropy between the parallel and perpendicular dynamics. Fur-
thermore, MHD theory can generally be used as a baseline for the behavior
of plasma dynamics [GP04]. Important here are the MHD instabilities that
may ultimately limit the performance of fusion devices.

There is a variety of MHD instabilities that can occur in plasma and
they can be categorized in various ways: One of them is the distinction
between internal instabilities, that do not disturb the plasma boundary,
and external ones, that do. Alternatively, they can be global, spanning an
extended range within the plasma, or localized. Lastly, another way of
classification instabilities is by considering the main mechanism that drives
them. These turn out to be the parallel current and the pressure gradient,
hence the denotation “current driven” or “pressure driven” [Fre87; Wes78].

Two importantmodes of instabilities that have been identified in current
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devices are the peeling mode, which is a global, current drivenmode that can
be thought of as a limiting case of the external interchange mode [WM99],
and the ballooning mode, which is a localized pressure driven mode. Note,
however, that here and henceforth the words local and global indicate a
localization around particular field lines versus delocalization in the entire
flux surface, respectively, and are not directly connected to the radial extent.
Coupled, the peeling-ballooning modes are thought to be important for
the limiting behavior of some modern devices, as they are able to cause
periodically erupting edge localized modes (ELMs). These limit the size of
the pressure gradient in the pedestal, which is one of themain characteristics
of the high confinement H-mode [Sny+02]. Therefore, it is of importance
to correctly understand the physics behind the peeling-ballooning mode
and to be able to simulate it accurately.

There exist fairly complete analytic theories for both the localized, pres-
sure driven ballooning mode [CHT79; Con+98] and the global, current
driven peeling mode [Lor75]. Since the main interest for ELMs lies in de-
scribing the instabilities of the outer layers of the plasma, these theories
take into account the approximate effect of the perturbation of the plasma
edge. However, bringing these two theories together required some effort,
since the theory of peeling modes is formulated for global modes, whereas
the theory of ballooning modes employs an asymptotic, so-called “high-n”
(where n refers to the toroidal mode number) ordering that is valid only
for localized modes, and breaks down for more extended modes. It is clear,
then, that a purely analytically theory is difficult to conceive and one has to
resort to simulations.

One strategy has been to drop the high-n ordering which, though use-
ful for analytically understanding of the ballooning modes, cannot easily
describe the peeling modes, and to simulate the plasma with the full MHD
model without approximation in the toroidal mode number. Codes such as
MISHKA [Mik+97] and KINX [Deg+97] are very successful at describing
the phenomena of peeling-ballooningmodes and accurate results have been
obtained [Huy05]. However, since these codes are not very fast, they are
not always suitable for parameter studies, so a main step in this domain
has been the development of the linear numerical code ELITE, that indeed
employs a high-n ordering at the plasma edge, but also keeps higher order
terms to correctly describe the intermediate n peeling-ballooning modes
[Wil+02].

ELITE has been successful at describing peeling-ballooning phenom-
ena and has allowed the subsequent study of the linear properties of ELMs
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[Sny+02; Sny+04; Web12]. However, the main limitation of ELITE and the
theory behind it, is the fact that it is valid only for axisymmetric configura-
tions. This allows for many simplifications, yet it can present an important
limitation to the generality of the predicted results. For example, stellarators
are inherently 3D and thus need 3D theory to be accurately described. But
also tokamaks, that can be approximated quite well by the assumption of
axisymmetry, experience some degree of three dimensionality. The ripple
due to the discrete toroidal coils, for example, breaks axisymmetry. Also, in
recent years, the effects of resonant 3D fields on the edge of tokamak plas-
mas have received increased attention because of their capability to control
the energy losses and power fluxes to plasma facing components caused by
ELMs, which can lead to unacceptable erosion rates of these components
in tokamak fusion reactors such as ITER [Eva+06].

In this work a full 3D theory is developed in the same spirit as the
axisymmetric theory behind ELITE, yet without employing the limiting
axisymmetric assumption. It differs from pure analytic 3D ballooningmode
theory and 3D peeling mode theory in two ways. Firstly, no assumptions
are made on the form of the plasma perturbation, such as the ballooning de-
scription used to derive the general 3D ballooning mode equation [Cor82b].
Secondly, the treatment of the plasma edge is not done in an approximate
fashion, as in [Con+98] for 2D ballooning modes, [Cor99] for 3D balloon-
ing modes or [Lor75] for peeling modes: The inclusion of the effects due
to the perturbation of the plasma surface is done as in ELITE, through the
actual calculation of the perturbed energy of the plasma boundary and the
surrounding vacuum, employing the extended energy principle [Ber+58].

The structure of this paper is as follows: In the next section, the major
analytic derivation of the 3D peeling-ballooning theory is developed. This
is done in steps, described in various subsections. The results, which consist
of a coupled set of second-order linear differential equations whose solution
provides the growth rate of the system, are then discussed in section 3.3
and interesting features are pointed out, as well as the parallels with the 2D
work performed earlier. After that, in section 3.4, conclusions are stated
and finally, appendices give more details about longer derivations.

3.2 Derivation

1 - Preliminaries The starting point is the extended energy principle, which describes the
system as if consisting of a body of plasma, separated from a conductingwall
by a vacuum layer [Ber+58]. The energy of the whole system, comprised of
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kinetic energy and potential energy of the plasma, a possible edge current at
the plasma surface and the magnetic energy of the surrounding vacuum, is
perturbed linearly and the eigenvalues corresponding to this perturbation
can be found from the stationary values of the Rayleigh quotient:

Λ [ξ,Qv] ≡
δW [ξ,Qv]

K [ξ]
≡
δWp [ξ] + δWs [ξn] + δWv [Qv]

1
2

∫
p ρ |ξ|

2 dr
. (3.1)

The different terms are given by [GP04]:

δWF (ξ) =
1

2

∫
p
dr

[
|Q|

2

µ0
− ξ∗ · j×Q+ γp |∇ · ξ|2+

+ (ξ · ∇p)∇ · ξ∗

]

δWs (ξn) =
1

2

∫
s
dS

[
|n · ξ|2 n ·

s
∇
(
µ0p+

B2

2

){]
s

δWv (Qv) =
1

2

∫
v
dr

[
|Qv|

2

µ0

]
,

(3.2)

where J·K denotes a jump and ξ andQv are the plasma displacement and the
vacuum magnetic field perturbation, which have to satisfy only the essential
boundary conditions:

ξ regular (on V)
n · ∇ × (ξ× Bv) = n ·Qv (on S)
n ·Qv = 0 (on exterior wallWv) .

(3.3)

δB = Q = ∇× (ξ× B) is the perturbation of the plasma magnetic field
and all the other symbols have their usual meaning.

For the plasma potential energy, an equivalent form [GJ68] is used:

δWF =
1

2

∫
dr

[
1

µ0

∣∣Q∣∣2 + γp |∇ · ξ|2
−2 (ξ · ∇p) (κ · ξ∗) − σ (ξ∗ × B) ·Q

]
,

(3.4)

where κ = b̂ · ∇b̂ = 1
B2∇⊥

(
µ0p+

B2

2

)
is the curvature, σ ≡ J‖

B is
proportional to the parallel current and Q is defined as follows:

Q = Q− B
µ0ξ · ∇p
B2

= Q⊥ − B [∇ · ξ⊥ + 2ξ⊥ · κ] . (3.5)
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In equation 3.4 the first term can be identified as the stabilizing term
due to the perturbation of the magnetic field and the second one due to the
perturbation of the plasma. The other two terms show the main driving
terms for instabilities, due to the pressure gradient and the parallel current,
as discussed in section 3.1.

2 - Plasma per-
turbation and
other quantities

In what follows, the same flux coordinates (ψ, θ, ζ) as in [DG83] are
used:

B = ∇ζ×∇ψ+ q(ψ)∇ψ×∇θ , (3.6)

which, by defining the field line label α = ζ− q(ψ)θ, can be brought into
Clebsch form in the new (α,ψ, θ) coordinate system:

B = ∇α×∇ψ , (3.7)

where the Jacobian J(α,ψ, θ) is identical to the Jacobian in the flux coordi-
nates J(ψ, θ, ζ). In this coordinate system, the parallel derivative reduces
to B · ∇ = 1

J
∂
∂θ . Note that θ has lost its immediate poloidal significance

and now rather means “along the magnetic field line”.
In the spirit of [GJ68, eq. A.6], the plasma perturbation ξ is decomposed

in a normal, a geodesic and a parallel component:

ξ = X
∇ψ
|∇ψ|2

+U
∇ψ× B

B2
+WB . (3.8)

Employing this, the three components of Q, defined in 3.5, are given
by: 

∇ψ ·Q =
1

J

∂X

∂θ

∇ψ× B

|∇ψ|2
·Q =

1

J

∂U

∂θ
− SX

B ·Q = −B2 [∇ · ξ⊥ + 2ξ · κ] .

(3.9)

with the total (or local) shear S [GJ68] in the (α,ψ, θ) coordinate system:

S = −
∇ψ× B

|∇ψ|2
· ∇ ×

(
∇ψ× B

|∇ψ|2

)

= −
1

J

∂Θα

∂θ
,

(3.10)

where Bi = B · ei and Θi =
∇ψ

|∇ψ|2
· ∇ui, with ui one of the coordinates

(ψ, θ, ζ).
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The curvature lacks a parallel component and, aiming for later com-
pactness of results, the normal and geodesic components are defined as
follows: 

κn =
∇ψ
|∇ψ|2

· κ =
∇ψ

|∇ψ|2 B2
· ∇
(
µ0p+

B2

2

)
κg =

∇ψ× B

B2
· κ = −

1

2p ′
1

J

∂σ

∂θ
,

(3.11)

with σ = B
B2 · ∇×B

µ0
proportional to the parallel current. Use is made of the

fact that the current is divergence-free, implying:

∇ · (Bσ) − 2

B4
∇
(
B2

2

)
· B×∇p = 0 . (3.12)

3 - Fourier rep-
resentation of
the perturba-
tion

As mentioned in section 3.1, the modes considered in this work are
intermediate to high-n in nature. More specifically, this means that these
modes are assumed to have a spectral content that is much higher than
the spectral content of the equilibrium quantities. This condition is used
further on to make key simplifications.

In this work, a Fourier representation is used, of which the advantages
are, on the one hand, that the periodicity constraints that the modes have to
comply with are inherently satisfied, and, on the other hand, that the sepa-
ration of spectra of the equilibrium and the perturbation can be performed
mathematically. Furthermore, a Fourier representation does not fail near
the plasma edge, as is the case for the higher orders of theory using the
ballooning representation, frequently used in theoretical studies [HM03;
CHT79].

To avoid large stabilization of the plasma potential energy due to exci-
tation of Alfvèn and fast magnetosonic waves (the term containing Q in
equation 3.4), the allowable perturbations have to approximately follow the
magnetic field and thus have a fluted shape, similarly to the case of normal
ballooning modes. Mathematically, this translates in the condition that the
parallel derivative be of order 1 and thus:

∂

∂θ
∼ O (1) . (3.13)

This reduces the order of the normal and geodesic components of Q to
O (1) and the only remaining term of orderO

(
ε−1

)
is∇·ξ⊥, with ε a small

parameter that will be defined later. Clearly, not both the derivatives in α
andψ can be chosen of orderO (1), as this would prevent the perturbations
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from being localized at all. However, their combination in the divergence
can indeed be of order O (1).

Subsequently, the stabilizing term due to sound waves that compress
the plasma (the term containing ∇ · ξ in equation 3.4) is assumed to be
minimized to zero by correctly adjusting the parallel component of the
perturbation to cancel out the contribution∇·ξ⊥ due to the perpendicular
components (all of orderO (1)), though strictly speaking there exist theoret-
ical cases where this is not possible, such as the Z-pinch [Fre82]. Thus, the
plasma is assumed to be incompressible, suppressing the stabilizing sound
waves.

To derive the corresponding criteria relating the two components X and
U of ξ⊥, in the (ψ, θ, ζ) coordinate system, the Fourier representation in
the variables ε−1α and ε−1θ is presented, with n the toroidal andm the
poloidal mode number:

X
(
ψ, ε−1θ, ε−1ζ

)
=

∑
m,n

X̂m,n (ψ) ei[nζ−mθ]

U
(
ψ, ε−1θ, ε−1ζ|θ, ζ

)
=

∑
m,n

Ûm,n (ψ|θ, ζ) ei[nζ−mθ] ,
(3.14)

where the notation
(
ψ, ε−1θ, ε−1ζ|θ, ζ

)
means that an additional periodic

slow variation of the Fourier amplitude Um,n is allowed, as is customary
in multiple-scale analysis [BO99]. It will be seen that this is necessary to
cancel secular terms that will appear to ultimately yield a solution that is
indeed periodic.

Transforming to the (α,ψ, θ) coordinate system, yields

ei[nζ−mθ] → ei[nα+(nq−m)θ] , (3.15)

which means that the condition that the parallel derivatives be of order
O (1) reduces to

nq−m ∼ O (1) , (3.16)

with q the safety factor.
This has the consequence that the perturbations, though with bothm ∼

O
(
ε−1

)
and n ∼ O

(
ε−1

)
, lie clustered around the line with slope q, as seen

in figure 3.1, which represents the separation between the spectral content
of the equilibrium quantities and the perturbation. This anisotropy has an
important implication: Themodes do not couple for differentmagnetic field
lines (represented by the coordinate α), but only along magnetic field lines
(represented by θ), so the double summation reduces to a single summation
overm.
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Figure 3.1
A sketch of the
assumed spectra
of the equilibrium
quantities (blue)
and the perturbation
(red, hatched).
The horizontal axis
indicates the toroidal
wave numbern and
the vertical axis the
poloidal wave number
m.

q

n

m

This result can be indicated symbolically by considering the following
representation for the plasma potential energy that explicitly shows the
coupling between a mode with mode numbers n andm and a mode with
n ′ andm ′, and where A = A (α,ψ, θ) represents equilibrium quantities:

∑
m,n

[∫
dθ

∫
dαAei[n−n

′]αei[(nq−m)−(n ′q−m ′)]θ

]
Xm,nX

∗
m ′,n ′

=
∑
m,n

[∫
dθ

[∫
dαAei[n−n

′]α

]
ei[(nq−m)−(n ′q−m ′)]θ

]
Xm,nX

∗
m ′,n ′

≈ 1

2π

∑
m,n

[∫
dθAδn

′
n e

i[(nq−m)−(n ′q−m ′)]θ

]
Xm,nX

∗
m ′,n ′

≈ 1

2π

∑
m

[∫
dθAei(m

′−m)θ

]
XmX

∗
m ′

∣∣∣∣∣
n=n ′

,

(3.17)

implying that, though the equilibrium quantities vary across the magnetic
field lines, in the coordinate α, they are quasi-constant in the nα scales on
which the perturbations vary, effectively removingA from the integral in α.
The same cannot be done for the integral along the magnetic field lines in
θ, since the perturbations vary as slowly as the equilibrium quantities due
to their flutedness.

Note that the integral along θ is a field-line average: Toroidal informa-
tion about the equilibrium is preserved, since the magnetic field line varies
toroidally. This in contrast to the axisymmetric case where the line average
can be reduced to an average in the poloidal angle, as in [Wil+02].
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Therefore, ultimately, the Fourier representations for X and U used are:
X =

∑
m

X̂m (ψ) ei[nα+(nq−m)θ]

U =
∑
m

Ûm (ψ|α, θ) ei[nα+(nq−m)θ] ,
(3.18)

with the exponents containing both terms of order O (1) and of order O (n)

with ε from now on chosen to be equal to n−1.

4 - Minimizing
plasma pertur-
bation

In a first step, the fast variation across the magnetic field lines, in the
coordinatenα is introduced by inserting only the fast part of the full Fourier
representations of equation 3.18{

X = X̂ (ψ, θ) einα

U = Û (ψ, θ|α, θ) einα ,
(3.19)

into the condition∇ · ξ⊥ ∼ O (1). To this end, an ordering technique for
the normal perturbation X is applied as follows:

X = X(0) + X(1) + . . . , (3.20)

with
∣∣X(k)

∣∣ / ∣∣X(k+1)
∣∣ ∼ O (n). Doing the same for the other components,

a condition for the first orders X(0) and U(0) is derived:

Û(0) =

(
−Θα +

i

n

(
∂

∂ψ
+Θθ

∂

∂θ

))
X̂(0) . (3.21)

[Note that the θ component has been included for the term in X, even
though it is formally of lower order than the other two. This is done in
hindsight by realizing that it is the most convenient way for the geodesic
perturbation to be periodic (see further below), simplifying the two-scale
analysis. The same result could be obtained by considering the problem
in the unmodified flux coordinates (ψ, θ, ζ), but would require a little bit
more work.]

Subsequently, the second order can be minimized as well making use
of the first order result. Collecting terms in the divergence and combining
them with the curvature term yields an expression correct up to order
∼ O

(
n−1

)
0 =

(
inΘα +

∂

∂ψ
+Θθ

∂

∂θ

)
X̂+ inÛ+ Q̂

(
X̂
)
, (3.22)
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where the second-order operator Q̂ is defined as:

Q̂ (β) =

[
1

J

∂

∂ui

(
JΘi

)
+ 2κn

]
β

+

[
2κg +

1

J

∂J

∂α
−

1

J

∂

∂θ

(
Bα

B2

)
−

1

J

Bα

B2
∂

∂θ
+
∂

∂α

]
×

×
[(

−Θα +
i

n

(
∂

∂ψ
+Θθ

∂

∂θ

))
β

]
.

(3.23)

This eliminates the parallel component of the magnetic terms and reduces
the entire stabilizing magnetic term to order ∼ O (1).

In a second step, the previous expression for Q is now simplified by
inserting the remainder of the Fourier representation for the coordinate
(nq−m) θ, the slow coordinate along the magnetic field:

X̂ =
∑
m

X̂m (ψ) ei(nq−m)θ

Û =
∑
m

Ûm (ψ|α, θ) ei(nq−m)θ ,
(3.24)

For ease of notation, in what follows, the hat is left out and it is to
be understood implicitly that Fourier modes are treated. In any case, the
presence of a subscriptm denotes a (complete) Fourier mode.

Using above, the condition 3.22 becomes:

Um =

(
−Θζ +

m

n
Θθ +

i

n

∂

∂ψ

)
Xm +

i

n
Qm(Xm) , (3.25)

relating Um to Xm, with Θζ ≡ Θα + q ′θ+Θθq and

Qm(Xm) =

(
Q0
m +Q1

m

i

n

d

dψ

)
(Xm) , (3.26)

whereQ0
m andQ1

m only depend on equilibrium quantities. They are calcu-
lated in the appendix:

Q0
m =

Bαq
′ + Jµ0p

′

Bθ
+
(
−Θζ +Θθ

m

n

)
Q1
m

+
nq−m

n

JB · ∇ψ×∇Θθ

Bθ

Q1
m = −i (nq−m)

Bα

Bθ
.

(3.27)
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Note that the term proportional toQm in equation 3.25 is an order of
magnitude smaller than the other terms and that Um indeed has a slow-
varying component in the coordinates α and θ. Also note that the relative
strength of the dependence on ψ is not important. Inserting the expression
thus obtained for the modesUm into equation 3.4 then yields an expression
for the plasma potential energy, as a function of the normal displacement
Xm only, correct up to second order in n.

Summarizing, by first requiring the entire stabilizingmagnetic energy to
be finite and of order O (1), leading to fluted modes, and subsequently min-
imizing the magnetic compressional energy to zero, above expression for
the geodesic component of the Fourier modes Um was derived, expressed
as a function of Xm (eq. 3.25). This allowed for the complete description
of the plasma potential energy as a function of the normal component Xm.

Finally, mixing the different orders of the terms, this expression can be
split into a linear part and a part corresponding to the first derivative:

Um =

(
U0
m +U1

m

i

n

∂

∂ψ

)
(Xm) , (3.28)

with: 
U0
m = −Θζ +Θθ

m

n
+

i

n
Q0
m

U1
m = 1+

i

n
Q1
m ,

(3.29)

whereQ0
m andQ1

m are defined in equation 3.27. Um can thus be seen as a
linear differential operator, acting on the modes of the normal perturbation.
Inwhat follows, it is found useful to assign a symbol to the parallel derivative
of U in θ, which can be written out compactly:

∂Um

∂θ
=

(
DU0

m +DU1
m

i

n

∂

∂ψ

)
(Xm) , (3.30)

with 
DU0

m = i (nq−m)U0
m +

∂U0
m

∂θ

DU1
m = i (nq−m)U1

m +
∂U1
m

∂θ
.

(3.31)
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5 - Minimization
of plasma po-
tential energy

To obtain the expression for the plasma potential energy it is useful to
define the adjoint of the linear operator U∗

k:

〈Uk (α) ,β〉ψ =
〈
α,UTk (β)

〉
−

[
J
i

n
U1∗
k α

∗β

]ψs

ψa

, (3.32)

where the boundary term, with ψa a flux surface deep inside the plasma
and ψs at the plasma edge, arises from the fact that external modes are
considered, which do not necessarily vanish at the limits of integration. The
inner product is defined as:

〈α,β〉ψ =

∫ψs

ψa

Jα∗βdψ , (3.33)

and the operator UTk as:

UTk (β) =

(
U
T ,0
k +UT ,1k

i

n

∂

∂ψ

)
β , (3.34)

with U
T ,0
k = U0∗

k +
1

J

i

n

∂

∂ψ

(
U1∗
k J
)

U
T ,1
k = U1∗

k ,

(3.35)

and equivalently forDU from equation 3.30.
Now, the series of equation 3.18 is introduced into the plasma potential

energy, given by equation 3.4, making use of the above expression of the
adjoint operatorsUTk andDUTk . In the appendix it is shown that this reduces
to a volume integral with three types of terms concerning the coupling of
the modes m and k (≡ m ′): Those proportional to the amplitude of the
mode Xm, those proportional to the first derivative in ψ of Xm and those
proportional to the second, and all terms also proportional to the amplitude
X∗
k of mode k. This is accompanied by a surface integral, with two types of

terms. The expression for the plasma potential energy then has the form:

1

2

∑
k,m

∫ψs

ψa

dψ

[∫
dθJX∗

ke
i(k−m)θPVk,m

]
Xm , (3.36)

with PVk,m a 2nd order differential operator

PVk,m = PV0
k,m + PV1

k,m

(
i

n

)
d

dψ
+ PV2

k,m

(
i

n

)2 d2

dψ2
, (3.37)
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along with a surface term:

1

2

∑
k,m

∫
dθJX∗

ke
i(k−m)θPSk,mXm

∣∣∣∣
ψs

, (3.38)

with
PSk,m = PS0k,m + PS1k,m

(
i

n

)
d

dψ
. (3.39)

The coefficients PVik,m and PSik,m are given by:



PV0
k,m = P̃V

0

k,m +
1

J

i

n

∂

∂ψ

(
JP̃V

1∗
m,k

)
,

PV1
k,m =

(
P̃V

1

k,m + P̃V
1∗
m,k

)
+

1

J

i

n

∂

∂ψ

(
JP̃V

2

k,m

)
,

PV2
k,m = P̃V

2

k,m ,

PS0k,m = −
i

n
P̃V

1∗
m,k ,

PS1k,m = −
i

n
P̃V

2

k,m ,

(3.40)

with

P̃V
0

k,m =
1

µ0

|∇ψ|2

J2B2

(
DU0∗

k − JS
) (
DU0

m − JS
)
+

1

J

∂σ

∂θ

(
U0∗
k +U0

m

)
+
σ

J

(
i (nq−m)U0∗

k − i (nq− k)U0
m

)
+ Sσ− 2p ′κn

+
1

µ0

(nq− k) (nq−m)

J2 |∇ψ|2

P̃V
1

k,m =
1

µ0

|∇ψ|2

J2B2

(
DU0∗

k − JS
)
DU1

m +
U1
m

J

∂σ

∂θ
− σ

U1
m

J
i (nq− k)

P̃V
2

k,m =
1

µ0

|∇ψ|2

J2B2
DU1

mDU
1∗
k .

(3.41)
The two derivative terms in PVik,m are crucial for hermiticity of the

plasma potential energy. This can best be seen by inserting equations 3.41
and 3.40 into equation 3.36 and canceling the surface terms from equation
3.38. The integrand of equation 3.36, including the double summation, then
can be written in tensorial notation:

(X∗)T P X (3.42)
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where a factor J/2 has been left out, with X =
(
Xme

−imθ
)T and the ele-

ments of the tensor P given by:

Pk,m =P̃V
0

k,m −
i

n

←−
∂

∂ψ
P̃V

1∗
m,k + P̃V

1

k,m
i

n

−→
∂

∂ψ

−
i

n

←−
∂

∂ψ
P̃V

2

k,m
i

n

−→
∂

∂ψ
,

(3.43)

which are indeed hermitian. The arrows indicate whether the derivatives
act on the right or on the left.

6 - Edge and
vacuum energy

The edge term, given in equation 3.2, is associated with a sheet current
Js running on the edge of the plasma that provokes a discontinuity in the
magnetic field on either side of the last flux surface of the plasma and is
given by applying Ampère’s law:

Js = n̂× JBK . (3.44)

Though a theoretical possibility, in practice an equilibrium edge cur-
rent is unusual and therefore left out [Jar10]. In addition, by considering
the essential boundary conditions of equation 3.3, it can be seen that the
inclusion of an equilibrium edge current would lead to a highly stabilizing
vacuum:

Qv · ∇ψ = Bv · ∇X at s . (3.45)

Indeed, the derivative of X in the direction ofBv is of orderO (n) ifB 6= Bv,
which would imply that the vacuum perturbation Qv be of that order as
well, leading to a large vacuum stabilization. This is to be avoided.

The vacuum energy, also given in equation 3.2, is always stabilizing and
should be minimized while respecting the essential boundary conditions
of equation 3.3. Since the vacuum is current-free, the vacuum magnetic
perturbation Qv satisfies

∇ ·Qv = ∇×Qv = 0 , (3.46)

which implies that it can be represented by a scalar potential φ that has to
obey Laplace’s equation:

∇2φ = 0 , (3.47)

connected to the plasma by the essential boundary condition and assumed
to vanish at infinity:

∇ψ · ∇φ =

{
B · ∇X at s
0 at w

, (3.48)
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Then, the vacuum energy term can be rewritten as:

δWv =
1

2µ0

∫
v
dr [∇ · (φ∇φ∗)]

=
1

2µ0

∫
∂v

dS · (∇φ∗)φ

= −
1

2µ0

∫
s
J (B · ∇X∗)φdθdα ,

(3.49)

where the negative sign is due to the difference between the definition of the
outward normal of the plasma volume and the direction of increasing mag-
netic flux. The perturbation is assumed to vanish at the surrounding wall,
located far away from the plasma, which is justified since peeling-ballooning
perturbations are assumed to be radially localized to some extent. φ is to
be solved with Laplace’s equation as a function of the plasma perturbation
X at the edge.

This is done conveniently using Green’s method, based on Green’s sec-
ond identity [Jar10; Cha97]:

∇ · (a∇b) = a∇2b+∇a · ∇b , (3.50)

which, upon interchanging a and b, taking the difference between both
equations and integrating over a volume yields:∫

v

(
a∇2b− b∇2a

)
dV =

∫
∂v

(a∇b− b∇a) · dS . (3.51)

This equation is used by settinga = φ (r) andb = GN (r, r ′) = 1
|r−r ′|+

F (r, r ′), a modified Green’s function for Neumann boundary conditions
[Jac98] for the laplacian in three dimensions, with∇2G = −δ (r− r ′) and
F a function that is symmetric in its arguments and satisfies:∇

2F
(
r, r ′) = 0

∇ψ · ∇GN = −
4π

∂v
,

(3.52)

with ∂v the total surface surrounding the volume. Choosing this equal
to the vacuum volume and evaluating at a point in the plasma edge, this
yields an expression for the vacuum potential [AW05]:

φ (r) = 〈φ〉+
∫∫
∂v
GN
(
r, r ′)∇ ′φ

(
r ′) · dS ′ , (3.53)

where 〈φ〉 is the average value of the potential over the whole surface.
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Since the perturbation is assumed to vanish at the surrounding wall, the
more complicated treatment of low n codes such as vacuum [Cha97], that
take into account the image currents in the surrounding wall, is not needed
here. So upon introducing the boundary conditions from equation 3.48
and realizing that the average potential goes to zero due to the surrounding
wall, assumed to be at infinity, equation 3.53 becomes:

φ (r) = −

∫∫
s

GN
(
r, r ′) JB (r ′) · ∇ ′X (ψ)dα ′ dθ ′ . (3.54)

Inserting this relation between the potential and the plasma perturba-
tion Xm,s (ψ) at the edge of the plasma into equation 3.49 yields:

δWv =
1

2

∑
k,m

X∗
k

[∫∫
s
Jdθdα

∫∫
s
Jdθ ′ dα ′VSk,m

]
Xm , (3.55)

with the Hermitian coefficients VSk,m given by:

VSk,m =
1

µ0

GN (r, r ′)

J2
ei[n(α

′−α)+(nq−m)θ ′−(nq−k)θ]×

× (nq−m) (nq− k) .

(3.56)

7 - Kinetic
energy

Finally, the last ingredient in the extended spectral variational principle
described in subsection 1 is the plasma kinetic energy, given by:

K [ξ] =
ω2

2

∫
p
ρ |ξ|2 dr , (3.57)

where ρ is the density of the plasma.
Now, as stated above, in subsection 4, the minimization of the plasma

compressional energy to zero by adjusting the parallel component is rela-
tively simple, and unaffected by the kinetic energy if the kinetic energy of
the parallel component is neglected. Not doing this would raise the com-
plexity of the problem, as the number of equations that has to be solved
would double. As the applicability and accuracy of the parallel dynamics of
the basic ideal MHD theory are questionable, this is not a major simplifica-
tion and, in any case, it represents a worst-case scenario since the plasma
sound waves are stabilizing [Fre82].

Since in the (perpendicular) plasma kinetic energy no derivatives of the
perturbation appear, these terms do not influence the minimization of the
magnetic compression term of the plasma potential energy performed in
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subsection 4 and the results obtained there relating the geodesic perturba-
tion U to the normal perturbation X are introduced in above formula for
the plasma kinetic energy:

K⊥ =
ω2

2

∫
p
drρ

[
1

|∇ψ|2
|X|2 +

|∇ψ|2

B2
|U|2

]

=
ω2

2

∫
p
drρ

∑
k,m

ei(k−m)θ

[
1

|∇ψ|2
X∗
kXm +

|∇ψ|2

B2
U∗
k (X

∗
k)Um (Xm)

]

=
ω2

2

∫
p
dr

∑
k,m

X∗
ke

i(k−m)θ

[
ρ

|∇ψ|2
+UTk

ρ |∇ψ|2

B2
Um

]
(Xm) ,

(3.58)

where the operators work on everything to their right, resulting in volume
and surface coefficients equivalent to the ones used equations 3.36 and 3.38:



K̃V
0

k,m =
ρ

|∇ψ|2
+

|∇ψ|2

B2
U0∗
k U

0
mρ

K̃V
1

k,m =
|∇ψ|2

B2
U0∗
k U

1
mρ

K̃V
2

k,m =
|∇ψ|2

B2
U1∗
k U

1
mρ .

(3.59)

Using the same arguments as in subsection 5, the integrand of the plasma
kinetic energy integral can be written in a Hermitian form equivalent to
equation 3.42.

3.3 Discussion

In the previous section, expressions were found for the potential energy
due to the plasma, which was described by three volume coefficients PVik,m
and two surface coefficients PSik,m, the plasma kinetic energy, described by
KV0
k,m and KS0k,m, and the potential energy due to the edge and vacuum,

of which the former is neglected and the latter is described by VSk,m.
By taking the Euler minimization with respect to each of the M am-

plitudes of the Fourier modes X∗
k, an equation in theM unknowns Xm is

obtained. The result can be summarized by the following equation that has
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to be solved for every field line:

∑
m

{〈
ei(k−m)θV0

k,m

〉
θ
+
〈
ei(k−m)θV1

k,m

〉
θ

(
i

n

)
d

dψ

+
〈
ei(k−m)θV2

k,m

〉
θ

(
i

n

)2 d2

dψ2

}
Xm = 0,

(3.60)

for k = m0 . . .m0 +M and with the field-line average 〈·〉θ defined as:

〈A〉θ =

∫∞
−∞ JAdθ , (3.61)

with the coefficients Vik,m given by:

Vik,m = PVik,m −ω2KVik,m , (3.62)

from equations 3.40 and an equivalent for KVik,m.
The restriction due to the normalization of the plasma kinetic energy

using a Lagrange multiplierω2 is mathematically equivalent to the mini-
mization of the Rayleigh quotient of equation 3.1 with an eigenvalue ω2

and the appropriate boundary conditions shown below [AW05].
This is a system ofM ordinary differential equations of second degree

for theM different amplitudes Xm. Two boundary conditions are needed,
the first one being the assumption that the perturbation vanishes deep into
the plasma. The second boundary condition comes by minimizing the
surface contributions from the plasma potential and kinetic energy and
from the vacuum term, which leads toN equations:

∑
m

{〈
ei(k−m)θS0k,m

〉
+
〈
ei(k−m)θS1k,m

〉 i

n

∂

∂ψ
+

+δvack,m

}
Xm = 0 ,

(3.63)

where the surface coefficient PSk,m are given by equations 3.40 and and
equivalent for KSk,m and the vacuum term is given by the integrand of
equation 3.55. TheseM equations provide a relation between the plasma
perturbation of theMmodes at the boundary.

The solution of this system of equations has to be done numerically.
This will be the subject of a future paper.
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1 - Identification
of terms

The terms due the plasma potential energy, given by equation 3.40,
clearly show the intuitive structure of equation 3.4, where the stabilizing
and potentially destabilizing terms can be identified:

• The stabilizing magnetic terms, described by 1
µ0

∣∣Q∣∣2, have only a
normal and a geodesic component, as the parallel component is min-
imized to zero. The normal component, reflected in the fifth term of
P̃V

0

k,m, relates to 1
J
∂X
∂θ of equation 3.9 whereas the geodesic compo-

nent is reflected in the first terms of P̃V
0

k,m, P̃V
1

k,m and P̃V
2

k,m and
relates to 1

J
∂U
∂θ − SX of equation 3.9.

• The stabilizing plasma compression term is not present as this is
minimized to zero by adjusting the parallel component of the pertur-
bation.

• Since the geodesic curvature is related to ∂σ∂θ through equation 3.11,
the last term of P̃V

0

k,m, along with the part containing the com-

plex conjugate of the second term of P̃V
0

k,m and the second term

of P̃V
1∗
m,k represent the destabilizing term due to the pressure gra-

dient. This is the main driving term of the ballooning instability,
−2 (ξ · ∇p) (κ · ξ∗).

• Finally, through equation 3.84, the other part of the second term
of P̃V

0

k,m, the third and fourth term of P̃V
0

k,m, the second term of

P̃V
1

k,m and the third terms of P̃V
1

k,m and P̃V
1∗
m,k correspond to the

destabilizing term due to the parallel current σ. This is the main
driving term of the kink instability, −σ (ξ∗ × B) ·Q.

For the plasma kinetic energy, a similar analysis can be easily made,
showing that the first term of K̃V

0

k,m corresponds to the normal part and
all the rest to the geodesic part. The parallel part was neglected.

2 - Axisymmetric
approximation

In the axisymmetric approximation, employed in [Wil+02] and subse-
quent papers, a derivation has been done similar to the one in the work
presented here, with the major exception that there it is assumed that the
plasma equilibrium as well as the perturbations have axisymmetric sym-
metry. This results in simplifications in the derivations, but also limits the
applicability of the results.

The axisymmetric results equivalent to equation 3.62 from [Wil+02]
are based on the theory derived in [CHT79]. However, the comparison
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between the results from [Wil+02] and the results from this work, with
the axisymmetric approximation inserted, is only feasible experimentally,
by actually calculating the energy for certain test cases, because the direct
axisymmetric results in [Wil+02] are not written in a compact and clearly
self-adjoint form, and could be written in a virtually unlimited number of
similar ways.

What is shown here, however, is a demonstration of the agreement
between the results from [CHT79], onwhich the direct axisymmetric results
are based, with equation 3.4, which is the basis of the 3D theory developed
here.

First of all, the “straight field line angle”ω of [Wil+02] is identified as
the flux coordinate θF which is related to the measure of the length along
the magnetic field, since B = 1

JF
eθF as seen from equation 3.7. Therefore,

the following relations between the flux coordinates and the axisymmetric
coordinates: 

αF = ζA −

∫χA
νdχ

ψF = ψA

θF =
1

q

∫χA
νdχ ≡ ω ,

(3.64)

to transform from the 3D flux coordinate system (αF,ψF, ζF) used here to
the axisymmetric coordinate system (ψA,χA, ζA) used in [CHT79] (with
the orientation inverted, consistent with subsequent papers), can be found.

Using this, expression 3.27 is simplified for the axisymmetric case and
inserted into the expression for the minimizing geodesic perturbation Um
from equation 3.25:

U0
m =

m

n
ω ′
(
1+

nq−m

nq

f2/R2

B2

)
+

i

n

(
−
m

n

f2/R2

B2
1

ν

(
ν

q

) ′
+

1

JA

∂JA
∂ψ

+ 2κn

)
U1
m = 1+

nq−m

nq

f2/R2

B2
.

(3.65)

This expression corresponds to the direct axisymmetric result found in
[CHT79, equation 12], which can be seen by inserting the slow dependence
X = Xme

−imω and U = Ume
−imω (the fast ζ-dependence has already

been accounted for) and rewriting it for Um:

Um =
i

n

∂Xm

∂ψ
+
m

n
ω ′Xm + eimω

i

n
Qconnor , (3.66)
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withQconnor given at the bottom of the same page. Indeed, this yields:

Qconnor =
f2/R2

B2ν
JABk‖

(
1

n

∂X

∂ψ

)
+ X

(
1

JA

∂JA
∂ψ

+ 2κn

)
=

{
f2/R2

B2

[
nq−m

nq

∂

∂ψ
−

(
m

n

(
1

ν

)(
ν

q

) ′
+ω ′im

nq−m

nq

)]
(Xm)

+ Xm

(
1

JA

∂JA
∂ψ

+ 2κn

)}
e−imω ,

(3.67)

which is equivalent to equation 3.65.
Subsequently, inserting the minimized Um into equation 3.4, assuming

axisymmetry and taking the same steps as to get to equation 3.36, inserting
fast Fourier modes, [Wil+02, equation 1] could be relatively easily derived,
which is the starting point of the theory behind ELITE. Introducing the slow
Fourier modes then leads to the axisymmetric equivalent to equation 3.62.
As the original derivation in [CHT79]was quite cumbersome, this is a useful
alternative that also provides deeper physical insight. The derivation has
been verified by the first author but, due to lack of space, is only mentioned
here, without reproducing it.

These results hint at the correctness of the 3D theory derived here, at
least considering the axisymmetric limit as a verification and the necessary
Hermiticity. More thorough comparisons will be the subject of future work.

3.4 Conclusions

Intermediate to high linear n modes in full 3D configurations were in-
vestigated theoretically using MHD theory. This is of interest because of
peeling-ballooning modes, which are thought to play an important role
for the cyclic behavior of ELMs in magnetic fusion reactors and could also
clarify some of the issues concerning the limits of the high confinement
H-mode observed in many of these devices.

The work presented here builds up on the previous theoretical basis in
[GJ68] and [Wil+02], which was based in turn on [CHT79]. The major
innovation in this work is that the condition of axisymmetry is relaxed and
thus provides results which are more widely applicable than those from
previous studies.

Thus, a full 3D treatment of the stability of peeling-ballooning modes
with intermediate to high-nmode numbers, valid also near the edge of the
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plasma, was developed making use of a Fourier expansion that included a
multiple-scale analysis to separate the spectral content of the equilibrium
and the perturbation, based on the extended energy principle first cornered
by [Ber+58].

The results of the theoretical investigation of this work are a concise Her-
mitian set ofM second order linear differential equations forM poloidally
coupled modes resulting from the energy minimization. These equations
have to obey two boundary conditions each, one of which is the vanishing
of the modes deep inside the plasma and the other one is a relation found by
minimizing the surface terms of the energy of the plasma and the vacuum.
This system of equations has to be solved numerically, which will be the
focus of future work.

The 3D equations derived in this study have been applied to the axi-
symmetric situation and it has been demonstrated that previous results in
this approximation can be reproduced, which provides an initial proof of
the correctness of the theoretical model developed here. Further simplified
verification of the validity of the 3D approach will be carried out when the
numerical implementation of the model is developed. Subsequently, the
results will be used to investigate various 3D effects, such as toroidal ripple
in tokamaks, the behavior of perturbation coils for the control of ELM, the
influence of a TBM module, etc.
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Calculation ofQ

By using

∂

∂α

[(
−Θα +

i

n

(
∂

∂ψ
+Θθ

∂

∂θ

))(
Xm (ψ) ei(nq−m)θ

)]
=
∂
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[(
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Θα + q ′θ+Θθ
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i
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∂
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(Xm (ψ))
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ei(nq−m)θ

=

[
−
∂Θα

∂α
−
∂Θθ

∂α

nq−m

n

]
Xm (ψ) ei(nq−m)θ ,

(3.68)

equation 3.23 can be described, upon introducing the slow Fourier modes
defined in equation 3.24, by the operatorsQ0

m andQ1
m from subsection 4:

Q0
m =

(
∂

∂θ
−
nq−m

n

∂
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)
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Θi

J
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1

J

∂J

∂α
−

1

J

∂
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(
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B2

)
+ 2κg .

(3.69)

This can be simplified by expressing the pressure balance and the expres-
sions for the curvature components described in subsection 1, explicitly in
the (α,ψ, θ) coordinate system, making use of the Clebsch representation
for themagnetic field,B = ∇α×∇ψ. Firstly, the pressure balance becomes:

µ0p
′∇ψ =

1

J

(
∂Bα

∂θ
−
∂Bθ
∂α

)
∇α+

1

J

(
∂Bψ

∂θ
−
∂Bθ
∂ψ

)
∇ψ , (3.70)

implying that, since the current lies in the magnetic flux surfaces,

∂Bα

∂θ
=
∂Bθ
∂α

and that µ0p
′ =

1

J

(
∂Bψ

∂θ
−
∂Bθ
∂ψ

)
. (3.71)

Introducing this, and the fact that Bθ = B2J, in the expression for the
normal and geodesic curvature:

κn =
1

Bθ

∂Bψ

∂θ
+

1

Bθ

(
gαψ

gψψ
∂

∂α
−
∂

∂ψ
+
gθψ

gψψ
∂

∂θ

)(
Bθ
2

)
−

−
1

J

(
giψ

gψψ
∂

∂ui

)(
J

2

)
κg =

J

B2θ

(
Bθ

∂

∂α
− Bα

∂

∂θ

)(
Bθ
2J

)
.

(3.72)
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Therefore, the operatorQ0
m becomes:
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(3.73)

with Θζ = Θα + q ′θ+ qΘθ. using the same technique, the operatorQ1
m

simplifies to:

Q1
m = −i (nq−m)

Bα

Bθ
. (3.74)

The axisymmetric limit of these equations corresponds to the work done
by [CHT79] and is discussed in subsection 2.

Minimization of plasma potential energy

The series of equation 3.18 is introduced into the plasma potential energy,
given by equation 3.4, making use of the expressions for the adjoint opera-
tors UTk andDUTk of 4. This is done here term by term.

Line bending
term

The stabilizing magnetic terms were described in subsection 1 by the
term 1

µ0
|Q⊥|

2. The parallel component, also called the magnetic compres-
sion term, was minimized to zero by the condition of equation 3.25 and the
two perpendicular components, also called the line bending terms, are to
be calculated independently from

1

µ0

(
1

|∇ψ|2

∣∣∣∣1J ∂X∂θ
∣∣∣∣2 + |∇ψ|2

B2
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∣∣∣∣2
)

, (3.75)
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Inserting the series of equation 3.18 then results in a contribution
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from the normal component, which directly leads to
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(3.78)
from the geodesic component. Extracting the different orders in the ψ
derivatives:
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(3.79)
with the surface term, discussed in equation 3.32 for the adjoint operator
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of U∗
k equal to:
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(3.80)

ballooning term The term that can be driven unstable by a pressure gradient oriented
in the opposite direction than the curvature is the origin of the ballooning
and interchange instability and has a contribution to the plasma potential
energy equal to

− 2Xp ′ (X∗κn +U∗κg) , (3.81)

that leads to
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and a surface term
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kink term The kink term represents the term that can be driven unstable by a
parallel current. It has a contribution equal to
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which leads to
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and surface term
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Hermitian form Combining the contributions from all the terms, the expression for the
plasma potential energy now has the form:
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with
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where the coefficients PVik,m can be simplified to a compact and visibly
Hermitian form.
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The coefficient PV0
k,m is given by a part
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and some more terms equal to:
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which are proportional to the normal derivative of a part of the coefficient
PV1
k,m, to which the surface term SV0

k,m is proportional as well.
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The coefficient PV1
k,m is given by
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where the last term is proportional to the normal derivative of the coefficient
PV2
k,m. The other terms of PV1

k,m can be written as the sum of:
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and its conjugate. Also, the surface term PS1k,m is proportional to PV2

k,m.
The coefficient PV2

k,m is given by
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which cannot be simplified any further.
Bringing it all together results in the terms PVik,m stated in subsection

5.
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Chapter4
The PB3D Code

The content of this chapter was published in the Journal of Com-
putational Physics by T. Weyens, R. Sánchez, L. García and A.
Loarte under the name PB3D: A new code for edge 3-D ideal
linear peeling-ballooning stability [Wey+16]. The terms of the
Creative Commons Attribution - Non Commercial - No Deriva-
tives License (CC BY NC ND) apply. The typography has been
adapted to the style of this document.

In chapter 3, ideal linear high-n theory for 3-D edge toroidal magnetic
configurations has been created, with the end result being a coupled set
of second-order ordinary linear differential equations in the normal

components of the Fourier modes, containing an eigenvalue. The solution
of this system of equations has to be done through numerical means. This is
where the new numerical code PB3D (Peeling-Ballooning in 3-D) comes
into play.

This chapter describes how the PB3D code has been designed and im-
plemented. It serves to illustrate the numerical aspects as well, such as the
algorithms that were used. Furthermore, the various external libraries are
mentioned, of which use is made. All of this is explained through the vision
of creating a dedicated, fast code.

Finally, a first example of the applicability of the code is presented, that
serves as a first indication for the usefulness of being able to simulate 3-D
aspects.
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abstract

A new numerical code PB3D (Peeling-Ballooning in 3-D) is
presented. It implements and solves the intermediate-to-high-n
ideal linear magnetohydrodynamic stability theory extended
to full edge 3-D magnetic toroidal configurations in previ-
ous work [Wey+14]. The features that make PB3D unique
are the assumptions on the perturbation structure through
intermediate-to-high mode numbers n in general 3-D config-
urations, while allowing for displacement of the plasma edge.
This makes PB3D capable of very efficient calculations of the
full 3-D stability for the output of multiple equilibrium codes.
As first verification, it is checked that results from the stability
code MISHKA [Mik+97], which considers axisymmetric equi-
librium configurations, are accurately reproduced, and these
are then successfully extended to 3-D configurations, through
comparison with COBRA [Sán+00], as well as using checks on
physical consistency. The non-intuitive 3-D results presented
serve as a tentative first proof of the capabilities of the code.

keywords: PB3D; ideal linearMHDstability; peeling-ballooning; high-n;
edge; 3-D

4.1 Introduction

Magnetohydrodynamics (MHD) theory is amathematically convenient and
widely used tool in the study of hot plasmas, such as the ones appearing in
toroidal magnetic confinement devices, such as tokamaks and stellarators,
even in regions in parameter space where, strictly speaking, the assumptions
on which it is based are less valid. Nonetheless, MHD instabilities often
lead to a rather hard limit on the stability of toroidal plasma configurations.
Hence, it is important to study MHD in detail and the topic of interest in
this work is the global ideal linear intermediate-to-high-nMHD stability
of edge 3-D toroidal equilibrium configurations, where n is a measure of
localization of the instabilities around the magnetic field lines.

The reason for focusing on the high-n assumption (also called “short-
wavelength”), is that the resulting modes can be easily excited and can grow
quickly, while at the same time spanning a large fraction of the plasma
cross-section, which can give them the power to couple energy from the
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hot plasma core to the cold surface [GJ68, sec. 7]. However, modes with
more intermediate n numbers can also be important. The so-called peeling-
ballooning modes, for example, are among the most important instabilities,
where peeling modes have a distinct intermediate-n nature, whereas bal-
looning modes are described accurately through high-n theory. Among
other things, they have been shown to be a prime candidate to explain the
periodic outbursts observed experimentally, called ELMs [Wil+02], which
can cause large power fluxes to the components in fusion devices and dete-
riorate plasma confinement [Loa+14].

Here, the term intermediate-to-high-n therefore refers to an expansion
in the parameter n accurate not just up to leading order in n, but also to
second order. To preserve clarity, furthermore, in the remainder of this
work, the term “high-n” is understood to include “intermediate-n“ as well.

The high-n assumption was pioneered theoretically some time ago in
the bulk plasma of axisymmetric configurations [CHT79], after which it was
extended to edge configurations [Con+98], and also to bulk 3-D configura-
tions [DG83]. An important common aspect of these theories, however, is
that they all make use of eikonal formulations for the spatial behavior (and
normal modes for the time behavior) of the perturbation vector ξ (r, t) of
the form

ξ (r, t) = ξ (r) eiωt = ξ̂ (r) einS(r)eiωt , (4.1)
whereω is the (complex) frequency of the normalmode and S is the eikonal,
defined through

B · ∇S = 0 , (4.2)
with B the magnetic field, which through the large factor n decouples the
derivatives into a slow derivative parallel to the magnetic field and a fast
derivative perpendicular to it. Subsequently, through judicious choices of
the form and behavior of the amplitude ξ̂, this carries on to decoupling of
the MHD equations in different orders. Finally, the lowest order is then
decoupled for the flux surfaces, and yields an ordinary differential equation1,
usually known as the ballooning equation, that describes the stability for
every flux surface separately. Higher orders typically yield the shape of the
amplitude function ξ̂.

For a full description of a general high-n mode, however, an eikonal
cannot be used easily, as it suffers from important limitations, such as the
lack of periodicity [HM03] which makes it difficult to reconstruct periodic
solutions, the assumed shapes for the perturbation amplitudes, and the
difficulty of treating the cases in which the edge of the plasma is perturbed.

1Or possibly a set of two if the plasma is compressible. [DG83]
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Because of these reasons, as an alternative, general Fourier modes of the
form ∼ ξ̂ (ψ) exp [nζ−mθ] can be used instead in a (ψ, θ, ζ) coordinate
system with ψ a flux coordinate and θ poloidal and ζ toroidal angles. A
flux coordinate is a function that monotonously varies across the nested
flux surfaces of ideal plasmas (i.e. without resistivity), such as enclosed
volume or flux; and it is convenient to deform the angular coordinates so
that the magnetic field becomes straight [Boo05]. Furthermore, the correct
treatment of edge-perturbed plasmas is also possible, through formally con-
sidering the toroidal system as the union of the plasma and a surrounding
vacuum, connected by an edge that in theory can support a jump in the
magnetic field through a skin current, and by investigating the perturbed
potential and kinetic energy of the whole system; a strategy referred to as
the extended energy principle [GP04].

For axisymmetric equilibria, this was the approach followed by the nu-
merical code ELITE [Wil+02]. In PB3D the approach is more general, as
full 3-D configurations are considered, and when they are restricted to ax-
isymmetry, this leads to the same range of validity as the original ELITE2. In
3-D, one would expect greater complexity and computational requirements,
but an important finding of the theory behind PB3D [Wey+14], is that the
numerical problem to be solved is not substantially more complex than that
for the axisymmetric case, as the fluted (see subsec. 2) high-n nature of the
modes leads naturally to a separation of scales that reduces the dimension
of the problem by one.

Apart from this, to motivate the search for a 3-D solution, some exam-
ples of 3-D configurations include the breaking of axisymmetry, such as due
to the usage of ferromagnetic Tritium Breeder Modules in ITER, discrete
toroidal field coils in tokamaks that introduce a toroidal field ripple, or
axisymmetry-breaking resonance magnetic perturbation (RMP) coils for
ELM control that work by explicitly breaking axisymmetry. Recently, these
topics have started attracting ample interest, and mostly so for the RMP
coils, as ELM control is becoming very important in the next-generation
tokamaks such as ITER.

In [Cha+13], for example, the 3-D corrugation of the plasma edge was
identified as one of the key ingredients in the mechanism of ELM control
through RMPs, (the simulation of which is a task for which PB3D would
be very well suited). As an alternative to full 3-D treatments, perturbative
approaches to 3-D effects were used in both [HN13] and [Heg14], where the

2ELITE has recently been extended to include a higher order in the expansion in n, not
yet present in the PB3D theory.
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former is geared mostly towards configurations with magnetic islands, and
the latter towards 3-D modifications of otherwise axisymmetric equilibria.
Finally, work with the CAS3D code that is able to perform 3-D stability
analysis, but which does not employ the high-n assumption, was presented
already in [Nüh96]. That research was geared towards stellarators, which
are fully 3-D configurations, that can also suffer from instability issues, and
where perturbative approaches are not possible.

After this introduction to and situation of the current work, the theoret-
ical model derived in [Wey+14] is shortly summarized in the next section.
Subsequently, in sec. 4.3, numerical aspects of the new PB3D code, such as
the discretization methods and employed algorithms, are discussed. Fol-
lowing this, in sec. 4.4 information is given about the verification of PB3D,
making use of comparisons with numerical codes MISHKA [Mik+97] and
COBRA [Sán+00], as well as checks on physical consistency. Finally, in sec.
4.5, a summary follows.

4.2 Theoretical model

The theoretical model on which the PB3D code is based, was developed in
[Wey+14] and is shortly summarized here. First, some general information
is given about the extended energy principle that is used and afterwards the
description of the magnetic field is discussed, as well as the specific form of
the perturbations used in this work. Finally, stability is investigated, making
use of minimized energy.

1 - Extended
energy principle

As discussed in the previous section, the extended principle is used
for normal modes with frequency ω. This leads to expressions for the
perturbed potential and kinetic energy for the system composed of plasma
connected to surrounding vacuum at the plasma edge. It is advantageous to
make use of the Rayleigh Quotient formulation which identifies eigenvalues
ω2 of the normal modes with stationary values of the quotient Λ, defined
as the ratio of perturbed potential and kinetic energy:

Λ [ξ,Qv] ≡
δW [ξ,Qv]

K [ξ]
≡
δWp [ξ] + δWs [ξ] + δWv [Qv]

1
2

∫
p ρ |ξ|

2 dr
, (4.3)

whereρ is the plasmamass density andξ andQv are the plasma, respectively
the vacuum magnetic field perturbation, and where it is illustrated that
the perturbed potential energy is composed of parts corresponding to the
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plasma (subscript p), the edge surface (s) and the surrounding vacuum (v):

δWp (ξ) =
1

2

∫
p
dr

[
|Q|

2

µ0
− ξ∗ · J×Q+ γp |∇ · ξ|2 + (ξ · ∇p)∇ · ξ∗

]

δWs (ξ) =
1

2

∫
s
dS

[
|n · ξ|2 n ·

s
∇
(
µ0p+

B2

2

){]
s

δWv (Qv) =
1

2

∫
v
dr

[
|Qv|

2

µ0

]
.

(4.4)
Here, J is the plasma current, defined through µ0J = ∇×B, p is the plasma
pressure, γ the adiabatic constant, n the unit vector normal to the plasma
edge surface and the quantity Q is the perturbation of the magnetic field

Q = ∇× (ξ× B) . (4.5)

An advantage of the generalized energy principle, is that the perturbations
only need to satisfy the essential boundary conditions

ξ regular (on p) ,
n · ∇ × (ξ× Bv) = n ·Qv (on s) ,
n ·Qv = 0 (on exterior wall) ,

(4.6)

as the natural boundary conditions are already taken into account automat-
ically.

2 - Magnetic
field and Fourier
modes

Fourier modes are used in the angular coordinates θ and ζ, which in
this work are chosen so that the magnetic field

B = ∇ζ×∇ψ+ q(ψ)∇ψ×∇θ , (4.7)

appears straight with its pitch constant on each flux surface and given by the
safety factor q (ψ) = dζ

dθ , with as flux coordinate the scaled enclosed poloidal
flux ψ =

ψpol
2π . To further simplify the situation, the toroidal coordinate,

is replaced by the field line label α = ζ − qθ, the resulting magnetic field
being proportional to the covariant unit vector in the θ direction:

B =
1

J
eθ , (4.8)

with J the Jacobian, which is why θ is called the parallel coordinate or mag-
netic coordinate.3 In the resulting (α,ψ, θ) coordinate system, the Fourier

3This is the for the case when the enclosed poloidal flux is used as normal coordinate. If
the toroidal flux is used, the parallel coordinate is not θ but ζ. PB3D is capable of this, but
the rest of the discussion is limited to using the poloidal flux as normal coordinate.
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modes then have the form:

ξ (α,ψ, θ) = ξ̂ (ψ) ei[(nq−m)θ−nα] . (4.9)

From basic stability considerations, it can be seen that acceptable high-n
modes must be fluted [Fre87, sec. 8.11], meaning that their parallel depen-
dence should be of the same order as the equilibrium variations, as opposed
to their fast perpendicular dependence. The introduction of the α coor-
dinate then leads to a natural separation of these two length scales that
decouples the modes that belong to different field lines as is illustrated in
[Wey+14, fig. 1]. This is expressed in the exponent of eq. 4.9 through the
condition nq−mn � 1.

3 - Minimized
perturbed
energy

Employing the Fourier form of the perturbations of eq. 4.9 in the ex-
pressions for the perturbed energies of eqs. 4.4, through the analytic min-
imization of certain stabilizing term the different components of the per-
turbation can all be written in terms of the normal component X = ∇ψ · ξ,
and through the decoupling of modes belonging to different field lines, the
mode vector of the perturbation, X = (X1,X2, . . . ,XM)T contains onlyM
components due to the θ dimension. The resulting expressions for the per-
turbed plasma potential and kinetic potential then reduce to integrals over
ψ of bi-linear form relating the vector of the modes of ξ to the perturbed
energies:

δWp =
1

2

∫
v
X∗PXdψ , (4.10)

K =
1

2

∫
v
X∗KXdψ , (4.11)

where the tensorsP andK are both of the same form, so they can be bundled
by defining the Lagrangian

L = P−ω2K , (4.12)

with elements Lk,m given by, using non-standard terminology, magnetic
average modes of the quantities Lk,m, defined as

Lk,m =

∫
α

Jei(k−m)θLk,m dθ , (4.13)

where the integration runs along a field line with label α. Note that this
is a consequence of the fact that only modes pertaining to the same field
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lines are coupled. Also note that the Lagrangian formulation is equivalent
to using the Rayleigh Quotient.

The quantities Lk,m = Pk,m − ω2Kk,m are second order differential
operators with elements of the form

Lk,m = L0k,m +

←−−
d

dψ
L1∗m,k + L

1
k,m

−−→
d

dψ
+

←−−
d

dψ
L2k,m

−−→
d

dψ
, (4.14)

which are Hermitian, since L0k,m and L2k,m are individually so. This ex-
presses the fact that there are no losses in ideal MHD. The arrows in above
equation indicate the direction in which the derivatives are to be taken.

Apart from this, the perturbed energy of the vacuum reduces to a surface
term δvack,m, and it can be shown that a perturbed skin current on the plasma
edge is not allowed as it would be very stabilizing, so that the contribution
due to the edge is zero.

Finally, Euler minimization of the Rayleigh Quotient in the different
functions X∗

k (ψ) leads to a coupled set of second-order ordinary differen-
tial equations (ODEs) of the functions Xm (ψ) that contain an eigenvalue
ω2 due to the time derivatives present in the kinetic energy as related to
the square of the velocity. Furthermore, the necessary partial integrations
that translate normal derivatives of the complex conjugate functions X∗

k,
introduce boundary terms at the edges of the integration boundaries in ψ,
which leads to a contribution at the plasma edge, which is added to the con-
tribution δvack,m due to the vacuum—the contribution at the plasma center
vanishes as the perturbations are assumed to vanish there; core instabilities
are not the interest of high-n theory.

Therefore, the resulting system of equations is of the form

∑
m

{
L
0
k,mXm −

(
L
1∗
m,kXm

) ′
+ L

1
k,mX

′
m −

(
L
2
k,mX

′
m

) ′
}

= 0 , (4.15)

and a total surface contribution∑
m

{(
δvack,m + L

1∗
m,k

)
Xm + L

2
k,mX

′
m

}
= 0 , (4.16)

with the primes indicating normal derivatives. With k = 1 . . .M and
m = 1 . . .M, these areM equations forM functions Xm, containing an
eigenvalueω2, and the second equation serves as a boundary condition for
the first, combined with the boundary condition of vanishing perturbations
at the plasma center, mentioned earlier.
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Expressions for the elements of the tensors Pjk,m, pertaining to the
plasma potential energy δWp, and Kjk,m, to the plasma kinetic energy K are
given for j = 0 . . . 2 by:

P0k,m =
1

µ0

|∇ψ|2

J2B2
×

×

(
DU0∗

k − JS− µ0σ
JB2

|∇ψ|2

)(
DU0

m − JS− µ0σ
JB2

|∇ψ|2

)

−
σ

J

(
JS+ µ0σ

JB2

|∇ψ|2

)
+

(nq− k) (nq−m)

µ0J2 |∇ψ|2
− 2p ′κn

P1k,m =
1

µ0

|∇ψ|2

J2B2

(
DU0∗

k − JS− µ0σ
JB2

|∇ψ|2

)
DU1

m

P2k,m =
1

µ0

|∇ψ|2

J2B2
DU1

mDU
1∗
k ,

(4.17)
and 

K0k,m =
ρ

|∇ψ|2
+

|∇ψ|2

B2
U0∗
k U

0
mρ

K1k,m =
|∇ψ|2

B2
U0∗
k U

1
mρ

K2k,m =
|∇ψ|2

B2
U1∗
k U

1
mρ ,

(4.18)

where S is the shear, σ is the parallel current and κn and κg are the normal
and geodesic components of the curvature:

S = −
1

J

∂Θα

∂θ
, (4.19)

σ =
εijk

µ0

1

B2J

∂Bj

∂ui
Bk , (4.20)

κn =
∇ψ

|∇ψ|2 B2
· ∇⊥

(
µ0p+

B2

2

)
, (4.21)

κg = −
1

2p ′
1

J

∂σ

∂θ
, (4.22)

making use of the covariant components of the magnetic field Bi = gθ,i/J
and the following definition for Θi:

Θi =
∇ψ · ∇ui

∇ψ · ∇ψ
. (4.23)



66 Chapter 4 : The PB3D Code

Subsequently, the quantities Uim andDUim, for i = 0, 1, correspond to the
geodesic component of the plasma perturbationU = ∇ψ×B

|∇ψ|2
·ξ, minimized

as a function of the normal component X, and the parallel derivative:

Um =

[
U0
m +U1

m

d

dψ

]
(Xm) , (4.24)

DUim =
∂Uim
∂θ

+ i (nq−m)Uim , (4.25)

where

U0
m =−

(
Θα + q ′θ

)
+

+
i

n

1

Bθ

[
Bαq

′ + Jµ0p
′ + i (nq−m)

(
Bαq

′θ− Bψ
)]

+
i

n

1

Bθ

nq−m

n
JB · ∇ψ×∇

(
Θθei(nq−m)θ

)
e−i(nq−m)θ ,

U1
m =

i

n

(
1+

nq−m

n

Bα

Bθ

)
.

(4.26)
and the remaining quantities have their usual meaning.

A discussion concerning the physical meaning of the different terms in
above equations is given in [Wey+14].

4.3 Numerical aspects of PB3D

In this section, first the discretization of the system of ODEs is discussed,
followed by a subsection considering the code structure and a section giving
information about the used algorithms.

1 - Discretization In PB3D, functions Xm (ψ) are discretized using finite differences at
I normal positions ψi. TheM different modes are then bundled at each
of these I normal positions into the new vector X of size I ×M whose
components Xmi ≡ Xm (ψi) e

−imθ.
Subsequently discretizing the differential operators of eqs. 4.15 and 4.16

then naturally leads to a generalized eigenvalue problem of the form:

AX = λBX , (4.27)

withA and Bmatrices corresponding to the potential and kinetic energy,X
the eigenvector and λ = ω2 the eigenvalue, so that λ > 0 denotes stability
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and λ < 0 instability. The discretized boundary condition (eq. 4.16) enters
in the last rows and columns of the matrices and the other boundary con-
dition, the vanishing of the discretization at the plasma center, at the first
rows and columns.

Importantly, if the discretization is done judiciously,A and B are Hermi-
tian, reflecting the energy-conserving nature of ideal MHD in a numerical
way. Though PB3D can handle this process using central differences of
arbitrary order, for the sake of illustration, only the results for the first order
are described here, using

f(1) =
fi+1 − fi−1

∆
−
∆2

6
f(3) + O

(
∆4
)

≈ fi+1 − fi−1

∆
,

(4.28)

with constant step size∆ = ψi+1−ψi. Defining the discretized Lagrangian
as L ≡ A− λB, the generalized eigenvalue equation becomes

LX = 0 , (4.29)

where now the bar notation is left out as henceforth all the quantities are
assumed to be magnetic average modes.

Discretizing the Euler eq. 4.15, the bulk of the matrix L is found to
be given by the superposition along the diagonal of a Hermitian stencil
consisting of nine (M×M) blocks of the form

(
1
2∆

)2 L2i − 1
2∆L

1†
i −

(
1
2∆

)2 L2i
− 1

2∆L
1
i L0i 1

2∆L
1
i

−
(

1
2∆

)2 L2i 1
2∆L

1†
i

(
1
2∆

)2 L2i
. (4.30)

The matrix L is adapted at the first and last normal position i = 1 and
i = I to incorporate the boundary conditions. At the first position, the
perturbation is set to zero by introducing an artificial eigenvalue λBC and
adapting the first row and column block of the matrices A and B to

Aij =

 1λBC if i = j = 1

0 if else
and Bij =

 1 if i = j = 1

0 if else
.

(4.31)
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The stencil at the last position i = I is modified using the boundary condi-
tion from eq. 4.16

0 1
2∆δ

vac 0
1
2∆δ

vac L0,mod
I 0

0 0 0

, (4.32)

with

L0,mod
I = L0I −

(
L1I + δvac

) (
L2I
)−1 (L1I + δvac

)†
. (4.33)

Finally, it is interesting to note that the stencil from eq. 4.30, which
resulted from the discretization of the Euler equation (eq. 4.15), can also
be interpreted directly as the terms in the Lagrangian by considering the
quadratic form 1

2X
†LX as the discretized version of

L = δW − K =
1

2

∫
v
X∗ (P−ω2V

)
Xdψ , (4.34)

the discretized integral reduced to a summation in the quadratic form.
Indeed, the factors of the stencil that builds up L have a clear connection
to the terms of the operators Vj and Kj in eq. 4.14, the terms for j = 0
ending up in the central elements of the stencil, the terms with j = 1 in the
main row and column and the terms with j = 2 in the diagonal elements.
As a consequence, it can be seen that an extension to higher orders central
differences is straightforward: The stencil of eq. 4.30 then just grows in size
and the factors change. Practically, apart from an easy way to implement
general discretization orders, this is of importance as well as it can be seen
that explicit storage of (only the nonzero elements of) thematrixwill contain
a lot of redundant information. It is then better to make use of so-called
matrix-free methods, where only the operations of the matrix on vectors or
matrices are defined in the numerical code.

2 - Code struc-
ture

PB3D is written in a modular way, so that it can be run using the output
of various equilibrium codes and to make the stability calculation customiz-
able.

The essence of PB3D consists of four major parts called drivers: the
input driver, the equilibrium driver, the perturbation driver and the solu-
tion driver. There is also a standalone program called POST that does the
post-processing of PB3D output, with a single driver. The different drivers
function completely independently, to allow for easy modularization, with
communication between them going exclusively through optimized HDF5
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channels using an output data file, for the large data-sets, as well as some
minor global variables for book-keeping. Apart from this, PB3D makes use
of the technique of Richardson extrapolation [Pre07, sec. 16.4] as well as
methods of keeping the memory usage below a threshold, on three different
levels. Finally, the whole PB3D code is parallelized using MPI to make effi-
cient use of modern computing resources. Figure 4.1 explains this general
structure.

Figure 4.1
PB3D general
flowchart. In every
Richardson level, it is
checked whether the
relative error between
successive levels falls
below a threshold. If
not, the parallel grid is
refined;

PB3D
initialize

PB3D finalize
Richardson
converged?

solution
driver

equilibrium
driver

perturbation
driver

input driver

refineR.A.

par. jobs

(continued caption) If so, Richardson extrapolation (R.A.) is applied to get an approximation of higher precision. An explanation
for the double arrow labeled par. jobs is given below, in the paragraph concerning the equilibrium driver. PB3D outputs the relevant
variables using HDF5 at completion of each driver, and reads them in the subsequent drivers, but this is not portrayed here.

Note that to find the straight field line coordinates, a similar procedure
is done as in [Sán+00], i.e. by finding the zero’s of

α− ζ+ qθ = 0 , (4.35)

but here a variant of Brent’s algorithm, called Zhang’s algorithm [Zha11], is
used.

Subsequently, a word should be said about the ways in which PB3D
treats the perturbation mode numbers. One can either choose between
prescribing them manually, setting a primary mode number n (fast-varying
field line label α; no coupling) and the secondary mode numberm (slowly-
varying parallel coordinate θ; coupling). However, it is usually more ef-
ficient to use the fast version, where the user prescribes only the number
of secondary modes numbers. PB3D will then automatically calculate the
mode numbers that are closest to resonance nq ≈ m. Not only does this
greatly reduce the number ofmodes, and thus the computing time necessary,
but it will also result in matrices A and B that are much better conditioned
as the whole theory behind PB3D is built on this resonant condition.
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Finally, in the next paragraphs, some more information is given about
the method of Richardson extrapolation, as well as on so-called energy
reconstruction.

Richardson Extrapolation Richardson extrapolation is used in PB3D
to get better approximations to the numerical integrals of the field lines
averages. Use is made of explicit knowledge of the discretization scheme,
so that the results for numerical grids with equal boundaries but different
numbers of points are combined to reduce the error further. More exactly,
for equidistant step size ∆ψ and discretization through finite differences of
order 1, the difference between the true mathematical operator in eq. 4.15
and the discretized version is indicated by the operator

δL [X] =

∞∑
l=1

∆ψ2l

(2l+ 1)!
×

×

L1X(2l+1) −
(
L
1†
X
)(2l+1)

−

∞∑
j=0

∆ψ2j

(2j+ 1)!

(
L
2
X(2j+1)

)(2l+1)

 ,

(4.36)
where the superscripts indicate normal derivatives. For general discretiza-
tion orders p, this can be written as

δL =

∞∑
l=1

al∆ψ
2pl . (4.37)

Assuming the same kind of dependence on the resulting eigenvalue as
well, the information from the solutions of R of different step sizes can be
combined, yielding a recursive formula for λ(R)r [DB03, p. 270]

λ
(R)
r = λ

(R)
r−1 +

λ
(R)
r−1 − λ

(R−1)
r−1

22pr − 1
for r = 1 . . .R , (4.38)

with λ(R)0 the eigenvalue. This expression is then an approximation of order
O
(
∆ψ2p(R+1)−1

)
to the physical eigenvalue.

The fact that the parallel grids used in PB3D are equidistant, with the
set of points of a certain Richardson level r equal to the set of points of the
previous level r−1, plus the set of intermediary points, has implications. An
important advantage is that for Newton-Cotes formulas of order 1 and 3 (i.e.
trapezoidal rule and Simpson’s 3/8 rule), not only the points but the entire
integrals calculated for the previous Richardson levels can be used in the
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calculation of the integrals of the current level, which cuts memory usage
almost by half. For these Newton-Cotes rules, the integral Ir calculated
with all the points of a Richardson level r > 1 is given by:

Ir =
Ir−1

2
+ Kr , (4.39)

where Kr is a combination of only the new points for this Richardson level
(i.e. the intermediary points with respect to the points of level r − 1),
differing slightly from the general Newton-Cotes formulas to account for
boundary effects.4

As explained in fig. 4.1, after each Richardson level r > 1, PB3D checks
whether the relative difference between the eigenvalue found in this level
and the previous level is lower than a certain threshold. If so, Richardson
extrapolation is applied to combine the eigenvalues calculated for all the
previous levels 1 . . . r into the approximation with the lowest error. If con-
vergence is not yet reached, the process starts again after refining the parallel
grid by adding the intermediate points, as stated above. Again, it should be
noted that the calculations for the next Richardson level will then only use
these intermediary points, i.e. half the refined grid, which is not a general
feature of Richardson extrapolation schemes. Note that, as the eigenvectors
are a function of the normal coordinate only, the eigenvectors found for the
current Richardson level can be used easily as a first guess for the next one,
sometimes drastically cutting computing time.

Finally, themodular structure of PB3Dgrants the opportunity for restart.
A simulation that has been done up to Richardson level r can be (re)started
up to level r+ 1. This allows for added control of the Richardson extrapola-
tion loop.

Energy reconstruction POST is a complementary post-processing pro-
gram for PB3D output. Among other things, it is worth mentioning that in
POST energy reconstruction is performed, by which the following is meant:
The eigenvector can be used to calculate the individual terms that constitute
the plasma potential as well as kinetic energy. Not only does this provide
a final and thorough check on consistency5 through checking whether the

4For example, for Simpson’s 3/8 rule, the coefficients of quadrature ci in
∫
f (ψ)dψ ≈

3
8∆ψ

∑
i cifi = Ir are given by 1 3 3 2 3 3 2 · · · 2 3 3 1, and have to be modified to

3 3 2 3 2 · · · 2 3 3 for Kr.
5Naturally, these terms do end up in the matrices A and B of the generalized eigenvalue

equation (eq. 4.27) through the vectorial and tensorial perturbation variables discussed in
the previous paragraphs, but only after algebraic manipulations that do not preserve their
individuality.
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Rayleigh QuotientΛ from eq. 4.3 is equal to the eigenvalue λ, it also allows
for the individual inspection of these terms to ascertain their individual
strengths, for example to see whether an instability is current- or pressure-
driven.

4.4 Verification

The PB3D is verified by comparing it with other numerical codes, as well as
using criteria of physical consistency. In a first subsection, the axisymmetric
equilibrium model CBM18 is discussed, which is then used in subsec. 2 to
perform verification for axisymmetric configurations. Subsequently, this is
extended to a 3-D configuration in subsec. 3.

The codes HELENA [Mik+97] andVMEC [Hir83] yield the equilibrium
configuration, where HELENA is axisymmetric and VMEC is 3-D. For
stability comparison, MISHKA [Mik+97] is used, which is a general-n
code that employs axisymmetric HELENA equilibria, as well as COBRA
[Sán+00], which is an infinity-n stability code that makes use of an eikonal
formulation and investigates the stability of 3-DVMEC equilibria by solving
the Ballooning equation. The numerical tool ELITE [Wil+02], referenced
to in the introduction, is not compared with directly, but ELITE has been
verified extensively with MISHKA itself.

Note that all stability results concern the most unstable mode and are
stated usingMISHKAnormalization, using themajor radius at themagnetic
axis and the toroidal magnetic field on axis.

1 - CBM18
Equilibrium
Model

The axisymmetric circular tokamak model called CBM18 is used, which
is designed to be ballooning unstable6 through a steep pressure gradient
[FJS10]. This model is used in HELENA format as well as ported to the
VMEC format. Fig. 4.2a shows pressure p and safety factor q, that are flux
quantities, with dependence only on ψ. A poloidal cross-section of this
circular tokamak model is shown as well in fig. 4.2b.

2 - Axisymmetric
verification

The PB3D results for CBM18 are directly compared to the results given
by the numerical code MISHKA. In these simulations, the fast version of
PB3D is used with 500 normal grid points, since increasing it beyond that
number only marginally changes the results. In the Richardson extrapola-

6Careful verification using peeling cases has to wait for a correct implementation of the
vacuum term ξvac subsection 1.
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Figure 4.2
Safety factor, pressure
profile and cross-
section for CBM18.
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(a) The flux quantities safety factor q (solid
line) and the pressure p (shaded, normal-
ized to value at magnetic axis).
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(b) Shifted-circle circular cross-section,
showing magnetic axis, plasma edge, and
seven equidistant internal flux surfaces.

tion loop, the number of parallel grid points is automatically increased in the
fundamental interval−π . . .π until a relative error of 10−10 is reached. The
number of poloidal harmonics, on the other hand, is manually increased
until convergence of the most unstable eigenvalue was reached. In this
axisymmetric case, the field line label α has no influence. Furthermore,
COBRA [Sán+00] is also used to give the limit of n→∞. The results are
plot in fig. 4.3.

Figure 4.3
Comparison between
results from PB3D
(squares), MISHKA
(crosses) and COBRA
(dashed line).
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(continued caption) At every value for the primary mode numbern, the number of secondary modesm is adjusted until
convergence is reached, where the fast version of PB3D automatically sets the optimal resonating range.

There is good agreement with simulations done with the numerical
codes ELITE and GATO in [FJS10, fig. 6], taking into account a factor
1.5 due to the difference in normalization for the growth rate, due to the
usage of RB = 1.5m

T instead of 1.0m
T . Furthermore, there is similar behavior

of increasing instability for higher n in both cases, i.e. for more localized
modes. This is a consequence of the ability of the mode to become better
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and better localized in the regions of bad curvature. Also, it can be seen that
they have the same marginal point, i.e. the mode number n for which there
is marginal stability. However, PB3D gives slightly more unstable results,
but this is explained by the fact that the problems solved are basically of
different nature between the two codes, due to the high-n approximation
employed in the former code as compared to the general-n approach in the
latter, which affects the different terms in a different way. In fact, the exact
same phenomenon can be observed for ELITE, for example in [Wil+02,
fig. 4], with a relative difference similar to the 10% obtained here. Further-
more, COBRA uses the infinite-n assumption, which makes it represent
the limiting case, as can be seen from the figure.

Subsequently, fig. 4.4 shows a comparison of the mode structure be-
tween PB3D and MISHKA simulations for a CBM18 run with n = 10,
using 30 Fourier modes with optimally chosen m. In fig. 4.4a, it can be
seen that the individual Fourier mode amplitudes Xm (ψ) as well as the
global envelope show a Maxwellian structure around the pressure drop, as
expected from infinity-n theory [CHT79]. Furthermore, the destabilizing
ballooning effect is obtained through the normal displacement of the indi-
vidual modes with mode numbersm, each resonating on its own rational
surface q ≈ m

n (not shown). In figs. 4.4b and 4.4c, a visual comparison
is displayed between PB3D and MISHKA of the global mode structure of
X (ψ, θ) in a poloidal cross-section.

Finally, the energy reconstruction discussed in the paragraph concern-
ing the post-processing driver, is employed as a check on physical consis-
tency: In fig. 4.5, a comparison is made between the calculated eigenvalue
λ and the ratio of potential to kinetic energies in the Rayleigh Quotient Λ
through energy reconstruction for different numbers of normal grid points
(fig. 4.5a) and in the discretization of the eigenvector (fig. 4.5b). It can
be seen that the energy reconstruction improves for increasing number of
equilibrium grid points, but that the improvement for increasing the grid
points of the discretization of the eigenvector only works up to the same
order as the number of grid points in the underlying equilibrium model.

3 - 3-D verifica-
tion

TheVMECversion ofCBM18has been adapted to a 3-Dversion through
varying the poloidal cross-section radius a (ζ) toroidally by 10% over the
whole toroidal range ζ = 0 . . . 2π, meaning that α(0)

α(π) = 1.1. The pressure
profile and safety factor is unchanged and the position of the magnetic axis
approximately so. Admittedly artificial, what matters is that this test case is
3-D.
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Figure 4.4
Most unstable mode
for a simulation of the
stability of CBM18
usingn =10 and 30
modesm.
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(a) Modes Xm at midplane and pressure p (shaded, normalized to value at magnetic
axis)

(b) Global mode structure in poloidal cut
ζ =0 for PB3D.

(c) And for MISHKA. (G. Huijsmans)

This is reflected in a change of most unstable growth rate,7 which is
seen in fig. 4.6, showing the results from PB3D and COBRA, as well as the
results copied from the axisymmetric case, which is referred to as the large
case.

Also, a small case is provided, which corresponds to the axisymmetric
configuration with a cross section equal to the smaller end of the modified
3-D case with constant radius equal to a (π) of the 3-D case. This small case
was designed to have the samepressure profile as the large case, and the same
safety factor. It is not directly evident why the small case is slightly more
unstable in the limit n→∞ but with the marginal n-value higher than the

7It should be mentioned that other types of toroidal modifications, such as by squishing
and expanding just the height or major radius, or applying a twist, have been tested and
confirmed to generally lead to qualitative similar results. The same counts for toroidal
modifications with more periods. The physical investigations of these configurations will
be a subject of further work.
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Figure 4.5
Energy reconstruction
as a function of
the number of grid
points in the VMEC
equilibrium model and
in the discretization of
the eigenvector.
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(a) Varying points Ieq in VMEC equilib-
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(b) Varying points Ipert in discretization.

(continued caption) The number of grid points of either the discretization of the eigenvector or the VMEC equilibrium that
is not varied, is kept constant at 500, and the simulations were done using n =10, with 20 modesm. At left axis, squares show
γ =

√
−λ and circles show reconstructed Γ =

√
−Λ. At right axis, triangles show the relative difference εrel in logarithmic

scale.

Figure 4.6
Comparison between
3-D results from PB3D
(triangles) and COBRA
(dashed line), as well
as the original large
(L) axisymmetric
results (PB3D with
squares and COBRA
with dashed line from
figure 4.6), and results
for the smaller (S)
axisymmetric version
(PB3D with circles and
COBRA with dashed
line).
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(continued caption) Again, the primarymoden is varied and for every value of it, the number of secondarymodesm is adjusted
until convergence is reached, where the fast version of PB3D automatically sets themost resonating range. The 3-D result is more unstable
than either the small or big CBM18 axisymmetric result.

large case, but in figure 4.7 the energy reconstruction is provided. In this
figure, the relative contributions of six components of the plasma potential
energy are plot, corresponding to the normal and geodesic components of
the line-bending energy which is always stabilizing; the ballooning term
(proportional to the pressure gradient) and the peeling term (proportional
to the parallel current), which can be destabilizing. (See for example [Fre87,
eq. 8.87].) It can be seen that the difference between the large and small
case is indeed quantitative.
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Now, curiously, it can be seen that the PB3D results for the 3-D equilib-
rium are more unstable than either the small and large cases, an effect also
observed in COBRA. To investigate this, the energy reconstruction is also
displayed in figure 4.7. The main difference now is the large destabilizing
normal component of the ballooning term, and the reduced compensation
by stabilizing line bending. And though the geodesic components of both
the ballooning and kink term are even slightly stabilizing, perhaps contrary
to expectations, due to the toroidal change that has been created by merging
the two axisymmetric cases, this is a far smaller effect.

Figure 4.7
Comparison of po-
tential energy terms
forn = 20. These
consist of the stabi-
lizing line bending
energy (LB) and the
potentially destabiliz-
ing ballooning term
(B) and kink term (K),
displaying the normal
components and
geodesic components
individually.
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(continued caption) This is done for the large (L) and small (S) axisymmetric cases, and the hybrid 3-D case, described above.

Admittedly, it is an artificial test case, but clearly 3-D results can in some
cases deviate strongly from axisymmetric ones PB3D provides the tool to
study this.

Finally, contrary to the axisymmetric case, for these 3-D configurations,
a discussion regarding the influence of the field-line label α and the limits
θmax on the parallel bounding box −θmax 6 θ 6 θmax is important, which
will also provide a check on physical consistency: Namely, α can be under-
stood as the base of the magnetic field lines, i.e. the toroidal position ζ0 at
the midplane θ = 0. As the entire flux surface is covered by the field lines,
along which is integrated in the magnetic average modes (eq. 4.13), the
parallel integration should range from −∞ . . .∞. It should therefore be
expected that the field line label α have no influence on the final results.

Fig. 4.8a shows howwell this is approximated in practice using a parallel
bounding box of finite size. It can clearly be seen that the results for small
bounding boxes are strongly dependent on α, which reflects that the modes
are artificially confined to only use the information of a limited subspace
of the 2-D flux surfaces. For larger sizes of bounding boxes—and corre-
spondingly larger number of parallel points—the difference, however, falls
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of linearly with the size as can be seen in fig. 4.8b.

Figure 4.8
The influence of the
bounding box in the
parallel direction
θmax .
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(b) Evolution of the standard devia-
tion σ divided by the average µ, as
a function of the box size θmax.

4.5 Summary

The new 3-D linear ideal high-nMHD stability code PB3D is presented,
which simulates the high-n ideal linearMHD stability in 3-Dmagnetic con-
figurations including edge effects. Typical high-n modes that appear are
peeling-ballooning modes, which have been linked to, for example, ELM
cycling phenomena observed, as well as RMP techniques that break the
axisymmetry of plasma for controlling them. It is expected that 3-D config-
urations offer can offer exciting new insights, such as possible new ranges
in parameter space of enhanced stability. Furthermore, it is important that
edge effects are taking into account correctly.

This paper focused on verifying the PB3D code using checks on physical
consistency as well as by comparing results with MISHKA and COBRA.
Good qualitative agreement is found and the quantitative differences are
explained through differences in assumptions between these numerical
codes. Furthermore, since MISHKA and COBRA have each been exten-
sively benchmarked with other codes (such as ELITE, GATO for MISHKA,
or TERPSICHORE for COBRA), this verification exercise has provided fur-
ther confirmation of the correctness of the approach used in PB3D and its
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implementation. A first proof of the capabilities of the code is also presented
with some non-intuitive results considering 3-D effects, with the aim of
providing a numerical tool that can be used to study them. Further work
will focus on the applications of the code and extracting physical results.
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Chapter5
Modification of Stability by
Toroidal Field Ripple

Chapter 4 presented the new numerical code PB3D, dedicated to
the study of 3-D edge high-n stability through ideal linear MHD.
For verification by comparison with other, established numerical

codes, a test case was used that is accepted by the community. With PB3D
now functional and verified, more realistic applications can be treated.

In this chapter a first real application is treated: The influence on stability
by a toroidal field ripple in a realistic tokamak geometry. This is a common
example of a situation where the axisymmetric approximation of tokamak
geometry is often insufficient, as even though the ripples induced by the
discreteness of the toroidal field coils are small, they are found to have a
large effect on plasma properties, such as a reduction of the pressure at the
top of the pedestal. [Sai+07a; Sai+07b; Ura+06].

The specific investigation of the effects of toroidal ripple on stability is
the subject of this chapter. It is done through first considering the influence
of pedestal pressure profile steepness of a typical axisymmetric H-mode
configuration on its stability. Afterwards, these axisymmetric equilibria are
modified by a toroidal ripple of prescribed amplitude and it is observed
how this changes the stability boundaries.

Comparisons with the COBRA numerical code [Sán+00] are provided,
as well as with experimental results from above references. The n → ∞
results from COBRA are found to be in general agreement with the ones
from PB3D, and there is qualitative agreement with the experiments, with
the same trends observed.
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abstract

The new numerical code PB3D (Peeling-Ballooning in 3-D)
presented in [Wey+16] is used to investigate the influence of
the toroidal field ripple on the stability properties of high-
confinement equilibria. From axisymmetric studies it has been
shown that often the stability limits of the pressure in the
H-mode pedestal in tokamaks are dictated by the peeling-
ballooning stability boundaries [Sny+02]. However, from ex-
perience it is also known that a toroidal field ripple, resulting
from the discreteness of the toroidal field coils, can have a
strong destabilizing influence on these equilibria [Sai+07b].
Therefore, the 3-D high-n philosophy of PB3D make it suit-
able for investigating this topic. It is found here that toroidal
ripple effects are indeed important, and that there is qualitative
agreement with the same trends observed as in the experimen-
tal results from the previous reference. Also, comparisons with
n→∞ results from COBRA [Sán+00] are done. The COBRA
results are similar but slightly more unstable.

5.1 Introduction

The influence on stability by a toroidal field ripple is an important problem
in tokamaks, which are often described using axisymmetric models. The
dominant component of the magnetic field, however, is generated using
toroidal field coils, and these are of an inherently discrete nature through
which they introduce a toroidal ripple. In fact, it is observed that these
ripples can have a strong influence on the stability of the plasma, despite
their apparently diminutive sizes: As a rule of thumb, for any well-confining
tokamak the modulation of the toroidal magnetic field should be no more
than about a percent. For ITER, for example, the toroidal field coils induce
a ripple of 1%, which leads to unacceptably large fast particle losses for
the Q=5 scenario. Therefore, it was amended to 0.3− 0.4% using ferritic
insets [Sai+07a]. These low values indicates already that 3-D effects are
of importance and it is one of the aims of this paper to analyze this in a
computational way.

The numerical code PB3D [Wey+16] is employed, which uses ideal lin-
ear magnetohydrodynamics (MHD) with the high-n assumption, where n
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quantifies how much a normal mode is localized along the magnetic field
lines of toroidal confinement devices in a fluted shape. For axisymmetric
configurations, they have been found important for stability considera-
tions, through so-called peeling-ballooning modes. Edge-Localized Modes
(ELMs), for example, which periodically release energy to the confinement
device edges, can be understood in terms of peeling-ballooning instabilities
[WM99]. They can be driven by both a pressure gradient and a parallel cur-
rent, and the perturbation of the plasma edge can be important. In PB3D,
therefore, like in the numerical code ELITE [Wil+02], the plasma edge is
allowed to be perturbed.

The example of the toroidal field ripple treated here, however, indicates
that it is also important to include 3-D effects, and there are many more
examples that will not be discussed, such as the stability of stellarators, that
are inherently 3-D, and the deliberate breaking of axisymmetry through
perturbation coils for ELM control. PB3D is designed specifically for these
3-D effects, as it does not employ any assumptions such as axisymmetry.
At the same time, it is also capable of including the influence of the edge
perturbation.

In a first section the equilibriummodel is described, as well as its 3-D rip-
ple modifications. Afterwards, section 5.3 treats the simulation results of a
study where width and height of the pedestal pressure profile were varied for
this axisymmetric model, to investigate the influence of the pedestal. Subse-
quently, the 3-Dmodified equilibria are used, to see how strong an influence
the ripple can have on the stability properties in section 5.4. Discussions of
the results are provided within these two sections. Finally, conclusions are
stated.

5.2 The EquilibriumModel

Theequilibriummodel considered as the base for the simulations performed
in this work is a representation of a so-called high-confinement (H-mode)
configuration. These H-mode configurations are characterized by the pres-
ence of a steep pressure gradient at the edge of the plasma, the pedestal. The
pedestal is formed by the stabilization of turbulence inside the separatrix
[Ter00]. Its steep gradient is welcome in fusion plasmas as it increases the
achievable temperature in the plasma core, ultimately benefiting the fusion
yield.

At the same time, however, steep pressure gradients are a source of free
energy for plasma instabilities such as the interchange modes and the bal-
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looning modes described through MHD, where the former can be thought
of as analogous to the Rayleigh-Taylor instability when a heavy fluid is
placed on top of a lighter one, and the latter as a localized version of it.
Via neoclassical effects, these gradients also drive larger bootstrap currents
close to the edge, which can drive kink modes and their more-localized
variants called peeling modes, also described through MHD [Wil+02].

1 - Equilibrium
description

The equilibria used in this work are modeled after the JET geometry.
They are D-shaped, contain a pedestal and are produced by the HELENA
equilibrium code [Mik+97]. In this first study, it is chosen to start with
a simplified description of the plasma shape using inverse aspect ratio ε,
ellipticity σ and triangularity τ. The D-shape is then provided through the
common expression [GKP10]:{

R = R0 + a cos (θ+ τ sin θ) ,

Z = Z0 + aσ sin θ ,
(5.1)

where the boundary is chosen slightly to the inside of the separatrix, as the
approximation of closed flux surfaces is used in the equilibrium codes as
well as PB3D. Here, R and Z are the cylindrical variables, a is the minor
radius and R0 and Z0 are the position of the geometric axis, that differ from
the magnetic axis through the Shafranov shift, but Z0 is commonly chosen
zero. For these JET-like equilibria the inverse aspect ratio ε ≡ a

R0
, is chosen

to be ε = 0.32, the major radius R0 = 2.96m, the ellipticity σ = 1.7, the
triangularity τ = 0.3, the magnetic field on the magnetic axis Bm = 2.1T,
the toroidal current I0 = 1.3MA and the poloidal beta βp = 1. The effect
of the X-point plasma shape, which is known to be necessary for H-mode
formation, is not included here for computational simplicity but will be
considered in the future.

The pedestal, subsequently, is modeled using a parameter that describes
its height as well as a parameter for its width. These parameters are then used
in an analytic expression for the pressure gradient in the flux coordinate
defined as s ≡

√(
ψ/ψedge

)
where ψ (s) is the poloidal flux between the

magnetic axis and a certain flux surface s:

dp

ds
∝ −2s

(
1− s2

)
+

(
dp

ds

)
ped

, (5.2)

where the second term represents a pedestal with height characterized by a
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factor Hped and situated at sa 6 s 6 sb, with in this model 1 6 sb:

(
dp

ds

)
ped

=


0 for s < sa ,

−Hped 2s

[
3
(
s−sa
sb−sa

)2
− 2

(
s−sa
sb−sa

)3]0.03
else .

(5.3)
Viewed in terms of ψ, this function is almost square, rising quickly

to its maximum value in the interval sa 6 s 6 1 corresponding to the
pedestal range. This implies that in this region the pressure gradient is
almost constant. A definition of the plasma pedestal pressure gradient as
a function of the poloidal flux would therefore be the most rigorous def-
inition.

However, as this is not very intuitive, here the gradient of the pedestal
pressure is considered as a function of the plasma radius at the midplane
R (θ = 0,ψ), measured in kPa/cm. As the pedestal is situated close to the
plasma edge, the relation between the plasma radius and the poloidal flux
is approximately given by

R (θ = 0,ψ) ≈ R0 + as = R0 + a
√

ψ

ψedge
, (5.4)

which leads to an expression for the pressure gradient:

dp

dR
≈ −

p0

a
2sHped , (5.5)

indicating an almost direct proportionality between pressure gradient and
theHped factor, as in the pedestal s . 1. Furthermore, p0 is a normalization
factor for the pressure. It is chosen such that the total toroidal current and
poloidal beta are kept constant. As a consequence, the total 3-D integrated
pressure is also constant, so that the total thermal energy in the plasma
is constant and contributions from the main plasma to the stability limits
are avoided. In practice, the values of the pedestal pressure gradients are
calculated from the results of the simulations and tabulated below.

Finally, to complete the description of the equilibrium, either the safety
factor q can be described, which is defined as the average ratio between the
number of times that a magnetic field line travels in the toroidal direction
compared to the poloidal direction, or the toroidal current. As stated in
the previous paragraph, it is chosen here for the latter, and a formulation
similar to equation 5.2 is used, but without the pedestal modification.
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2 - Axisymmetric
equilibria

In this work, multiple pedestal heights and widths are used. These are
summarized in table 5.1. Note again that the pressure profiles are rescaled
globally in order to keep the total 3-D integrated pressure constant. Also
note that due to the formulation of the pressure profile through its derivative,
changing the width (sb − sa) while keeping the pedestal height constant,
requires adjusting the height parameter slightly. More precisely, the quantity∫sa

1

dp

ds
ds , (5.6)

is kept constant and in this case equal to the value corresponding toHped =

1.5, sa = 0.95. In all simulations, sb = 1.1 is used.

Table 5.1
The parameters of the
H-mode equilibria
chosen in this work:
The pedestal height
parameters with
corresponding
pressure, and the
pedestal widths
with corresponding
heights (see main
text) and pressure.
Also shown are the
pressure gradients
in the pedestal. The
case with height 1.5
corresponds to the
case with width 0.95.

pedestal height variation (with sa = 0.95, sb = 1.1)

Hped [ ] 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.5 2.0 4.0
p [kPa] 11 14 15 17 19 20 23 27 30 37
dp
dR

[
kPa
cm

]
2.3 2.9 3.2 3.6 4.0 4.2 4.8 5.7 6.3 7.7

pedestal widths variation (with sb = 1.1)

(sb − sa) [ ] 0.19 0.18 0.17 0.16 0.15 0.14
Hped [ ] 0.77 0.88 1.0 1.2 1.5 1.9
p [kPa] 29 28 28 27 27 26
dp
dR

[
kPa
cm

]
3.4 3.8 4.2 4.8 5.6 6.9

In figures 5.1 and 5.2, the pressure profiles are plotted as a function of the
flux label smentioned above, for the multiple pedestal heights, respectively
widths. Note again that the global pressure profiles are rescaled to have
the same global integrated pressure, to keep the total thermal energy in
the plasma constant; An effect mostly visible for the pedestals with higher
top pressures. Also, the accompanying safety factors are plotted, with the
same color coding. The safety factors are given only as an indication, and
though they are very similar, it can be seen, for example, that the cases with
steepest pedestals also have the strongest magnetic shear S, which through
its definition as

S =
dq

dr

r

q
, (5.7)
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with r a flux function such as ψ or s, is related to the slope of the q-profile
in the graph. This is a consequence of the fact that the toroidal current
profile is kept constant for the different cases, so that through the force
balance in the normal direction (i.e. the direction normal to the magnetic
flux surfaces) a stronger (negative) gradient in pressure is compensated by
a stronger (positive) shear of the magnetic field lines.

In the field-aligned (ψ, θ,ϕ) coordinate system, for example, with ψ
from above and θ and ϕ straight-field poloidal and toroidal coordinates
and J the Jacobian, the normal force balance becomes:

dp

dψ
= J

(
jθBϕ − jϕBθ

)
. (5.8)

Making use of the expression for themagnetic field in this coordinate system

B =
1

J
(eθ + qeϕ) , (5.9)

as can be seen from [Wey+14, eq. 6], for example, the force balance reduces
to

− jϕ =
dp

dψ
+
q

J

∂

∂ψ

(
R2q

J

)
, (5.10)

for the axisymmetric case, indeed relating dp
dψ to dq

dψ .
Finally, in figure 5.3 a typical cross section is plotted. Note that the

lines of constant poloidal angle differ from what would be expected from a
geometrical angle and that they are additionally strongly deformed around
the pedestal region.

3 - 3-Dmodified
equilibria

Theequilibria presented in the previous subsection differ in their pedestal
steepness, either through the height or through the width. These equilibria
are modified in a 3-D manner by applying a toroidal ripple on the cross-
section shape. In this work, this is done in a systematic manner by consid-
ering the cylindrical coordinates R and Z that describe the boundary, and
modulating them in such a way that the boundary is modified at each point
in the direction perpendicular to the surface at that point. By considering
the following expression for the contravariant unit vector in the direction
corresponding to the ψ coordinate mentioned before:

∇ψ =
R

J
(Zθ∇R− Rθ∇Z) , (5.11)

the unit vector in the normal direction can be found as a function of the
orthogonal unit vectors in the R and Z direction.
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Figure 5.1
(left) Pressure profiles
decreasing as a
function of the flux
label s for different
pedestal heights
indicated by factors
Hped . (right) the
corresponding safety
factors increasing as a
function of swith the
same color code and
there is an inset at top.
The 3-D integral of the
pressure is the same
for all the cases.
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Figure 5.2
(left) Pressure profiles
decreasing as a func-
tion of the flux label s
for different pedestal
widths indicated by
(sb − sa). (right)
the corresponding
safety factors increas-
ing as a function of s
with the same color
code and there is an
inset on top. Only
the labels for 0.14
and 0.19 have been
included for clarity.
The 3-D integral of the
pressure is the same
for all the cases. 0
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Superimposed on this, the modulation itself is multiplied by an array
of terms with a particular poloidal mode number M and toroidal mode
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Figure 5.3
Cross section for the
axisymmetric H-
mode equilibria with
pedestal height 1.0.
Plot are the projection
of 11 equidistantly
spaced flux surfaces
s = const. with
spacing 0.1 (solid)
and 36 equidistantly
spaced surfaces
of straight-field
lines poloidal angle
θ = const. with
spacing 10◦ (dashed)
on the poloidal plane.
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numberN. The resulting expression for the modification of the unit vector
r̂ is then given by:

r̂ → r̂+ ∆RR̂+ ∆ZẐ , (5.12)

with the two factors ∆R and ∆Z given by:
∆R =

Zθ√
R2θ + Z

2
θ

∑
i

[
Rci cos (Miθ−Niϕ) + R

s
i sin (Miθ−Niϕ)

]
,

∆Z =
−Rθ√
R2θ + Z

2
θ

∑
i

[
Zci cos (Miθ−Niϕ) + Z

s
i sin (Miθ−Niϕ)

]
,

(5.13)
where the subscript θ denotes the poloidal derivative, but i is an index. Note
that this Fourier description allows for arbitrary shapes of the 3-D modi-
fication. For instance, they could be aligned with the plasma safety factor
which, on a sidenote, can be used for the study of resonant perturbation for
ELM control. In this work, the following choice for the modulation is made,
motivated by experimental observations for the JET tokamak [Sai+07a, fig.
2]:

∆R,Z ∝
(
1+ cos θ

2

)3

cos (16ϕ) , (5.14)

which results in Fourier coefficients δci = Rci = Zci and δsi = Rsi = Zsi from
table 5.2. Note that δsi = 0 implies that stellarator symmetry is preserved,
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as defined in [DH98]. For the global proportionality constant multiplying
this expression, multiple values are investigated. This is discussed in section
5.4.

Table 5.2
The Fourier coefficients
chosen to represent
the toroidal field ripple
in this work. Note that
stellarator symmetry is
preserved.

i = 1 i = 2, 3 i = 4, 5 i = 6, 7

δci 0.3125 0.234375 0.09375 0.015625
δsi 0.0 0.0 0.0 0.0
Mi 0 1,-1 2,-2 3,-3
Ni 16 16 16 16

Practically, the modification of the boundary shape is done in a new
PB3D module, that takes the HELENA equilibria that are used to gener-
ate the axisymmetric equilibria, calculates the Fourier coefficients of the
cylindrical coordinates R andZ that describe the edge, and convolutes them
with the appropriate modulation Fourier series in an automated way. After
that, the results are transformed to a Fourier series in another coordinate
appropriate for exportation to the VMEC equilibrium code [Hir83], that is
able to handle 3-D cases. Whereas HELENA and PB3D use field-aligned
angular coordinates, the philosophy of VMEC is based on the optimal de-
formation of the poloidal angle in order to minize the Fourier base. As an
input, however, it requires the Fourier modes of the edge in the geometrical
poloidal and toroidal coordinates.

In figure 5.4, an exaggerated modulation of the cross-section is shown
through the extremal values and through varying the toroidal angle over a
fundamental half-period 0 < θ < 10◦ of the ripple and plotting the projec-
tion of 36 equidistantly spaced points on the plasma edge in the field-aligned
poloidal coordinate, though not all are visible. Shown also for comparison
is the projection of the edge surface from figure 5.3. Furthermore, in fig-
ure 5.5 associated 3-D rendering of the modified equilibrium is presented.
Note that the ripple is indeed situated at the outboard of the configuration,
around θ = 0.

5.3 The Pedestal

As stated in the introduction, the pedestal is the steep part of the pressure
profile close to the plasma edge. It is a welcome consequence of the tur-
bulence suppression inside the separatrix obtained in H-mode, but it is
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Figure 5.4
Extremal cross sections
(dashed) for the
3-D modified H-
mode equilibria with
pedestal height 1.0,
exaggerated between
ten- and a hundred-
fold, compared to the
axisymmetric case
(solid). Shown also
are 36 equidistantly
spaced points with
spacing 10◦ on the
edge in the field-
aligned poloidal angle,
though some cannot
be distinguished.
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Figure 5.5
3-D rendering of the
edge surface of an
equilibrium configu-
ration perturbed by a
toroidal ripple, exag-
gerated between ten-
and a hundred-fold,
with a quarter of the
toroidal range cut.

also a source of free energy for ballooning modes. It is of interest, there-
fore, to vary the pedestal parameters in an equilibrium configuration and
investigate the influence this has on the high-n stability.

Both the pedestal height and width were varied independently, and the
growth rate of the resulting instabilities were computed as a function of the
principal mode number n, which appears in the formulation for the plasma
perturbation ξ used by PB3D:

ξ (α,ψ, θ) =
∑
m

ξ̂m (ψ) ei[nα+(nq−m)θ] , (5.15)

where the (α,ψ, θ) coordinate system is used: ψ is the normal coordinate
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defined above, θ is the coordinate parallel to the magnetic field lines and
α ≡ ϕ − qθ is the geodesic coordinate, which indicates on which field
line in a flux surface one is situated. The flutedness condition translates
to n � 1 and nq − m ∼ O (1) through which it can be argued that, to
lowest order, themodes can be decoupled in the geodesic directionα, which
means in practice that the simulations for different values of n can be done
independently [Wey+14, fig. 1]. This is also the reason why n does not
appear as a subscript in equation 5.15.

As there certainly is coupling in the parallel direction θ, multiple sec-
ondary mode numbersm have to be taken into account, however, and in
PB3D this is done by considering a fixed numberM of them, and at every
flux surface the rangem− M

2 < m < m+ M
2 is taken, withm = qn. In all

the results presented here, convergence was achieved in the parameterM
by choosing it high enough, by which it is meant that the resulting growth
rate did not change by more than 10−3 for further increases inM. For the
other factors, such as number of points in the normal and parallel grids, the
same was done.

The results for the axisymmetric simulations are summarized in figure
5.6, which shows the normalized growth rate as a function of the principal
mode number n, for the different pedestal height factorsHped, and in figure
5.7, for different pedestal widths. Note that the equilibria with pedestal
heights lower than 0.8 and pedestal widths wider than 0.18 are stable.

Figure 5.6
Growth rate for the
axisymmetric H-
mode equilibria with
different pedestal
heights, normalized
to Alfvén time on the
magnetic axis.
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This puts the critical pressure gradient at the pedestal for the axisym-
metric case at a value of about dp

ds ≈ 3.5kPa
cm , as can be seen in figure 5.8,

that serves as a summary for the axisymmetric simulations where height
or width of pedestal were varied. It shows the most unstable growth rate
as a function of the pedestal pressure gradient, as well as the marginally
unstable primary mode number n (i.e. the lowest n that is unstable). There
is a good match between the marginally unstable primary mode number,
as well as the growth rate, for both types of simulations, which reflects the
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Figure 5.7
Growth rate for the
axisymmetric H-mode
equilibria with dif-
ferent pedestal widths,
normalized to Alfvén
time on the magnetic
axis.
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fact that it is really the pressure gradient that drives these instabilities.

Figure 5.8
(top) Growth rate
for the axisymmetric
H-mode equilibria
versus pedestal
pressure gradient,
normalized to Alfvén
time on the magnetic
axis. (bottom) The
marginal primary
mode numbern. The
blue lines correspond
to the variation of
pedestal height, red to
width. The green area
is stable.
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Instructive is therefore figure 5.9 that shows the mode structure of the
normal component of the perturbation at the midplane θ = 0, as well as the
normalized pressure profile. The two cases shown also indicated to by circles
in figures 5.6 and 5.7: (A)Hped = 4.0, (sb − sa) = 0.15 and (B)Hped = 2.5,
(sb − sa) = 0.14, both with primary mode number n = 20. Note how
these unstable modes are localized around the region where the pressure
gradient is highest and how they deviate noticeably from a Gaussian shape
around the top of the pedestal. These structures are typical of ballooning
modes, where furthermore each individual Fourier mode resonates around
its resonant surface where q ≈ m

n . This can also be verified in figure 5.10,
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Figure 5.9
Mode structure of
normal component
of perturbation at
the midplaneθ =

0 for cases A with
Hped = 4.0,
(sb − sa) =

0.15 (top) and B
withHped = 2.5,
(sb − sa) =

0.14 (bottom). The
different colors serve
to tell apart the dif-
ferent Fourier modes.
Also shown are the
normalized pressure
profiles.
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which shows the fraction of energy carried by the different terms in the
plasma potential energy. The normal ballooning term dominates.

Figure 5.10
Comparison of po-
tential energy terms
forn = 20. These
consist of the stabi-
lizing line bending
energy (LB) and the
potentially destabiliz-
ing ballooning term
(B) and kink term (K),
displaying the normal
components and
geodesic components
individually.
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(continued caption) These are the components in the directions normal to the flux surfaces, respectively on the magnetic flux
surfaces, but normal to the magnetic field.
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5.4 Influence of Ripple on Stability

Here it is investigated how much the stability boundaries change when
a toroidal ripple is applied. What this means is that it is looked at how
strong a ripple is necessary to drive the previously stable cases with pedestal
height factors shown in table 5.1, unstable, i.e. how much the green zone in
figure 5.8 shrinks as a function of ripple amplitude. This will illustrate the
destabilizing influence these ripples can have.

Here only the simulation results for a single representative high primary
mode number n are shown, as it is assumed that the instabilities are of
the ballooning type as in the previous section, which are most unstable for
mode numbers approaching the infinite limit. Later, this will be verified by
plotting the mode structure in figure 5.11. In practice, n = 50 is chosen as
it is high enough to be not fundamentally different from the infinite limit,
while it is still low enough so that the resolution in the normal direction
does not need to be unrealistically high and simulation times are not longer
than they need to be.

As the simulations done here are 3-D in nature, there is an additional
factor that has to be taken into account: the range along the parallel variable
θ. Whereas for the axisymmetric simulations of the previous section, the en-
tire field lines can be covered by ranging over a fundamental period 0 . . . 2π,
for 3-D cases in theory this only happens by ranging over −∞ . . .∞. In
practice, it was tested numerically that choosing it from −10π . . . 10π was
sufficient.

Presented in table 5.3 are the normalized growth rates for the different
pedestal heights and ripple amplitudes δr. For comparison, also shown
whether the results of the n→∞ ballooning code COBRA [Sán+00] are
stable or unstable, which gives an upper limit to instability. From this table,
it is directly clear that the presence of a ripple indeed lowers the stability
boundary, so that equilibria with pedestal heights that were previously stable
can be driven unstable. Also, the n → ∞ limit provided by COBRA are
comparable to the PB3D results, but often give some overestimation of the
instability of the configurations, indicating that intermediate primary mode
numbersn, taken into account in the PB3D code, are important. And in any
case, kinetic effects are also expected to kick in long before n can become so
large. Many of them, such as the Finite Larmor Radius effect, are stabilizing.

Furthermore, in figure 5.11 it can be seen that the resulting unstable
modes are still driven by pressure gradients, with indeed a ballooning mode
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Table 5.3
Growth rates (in
black, above) for the
3-D ripple modified
H-mode equilibria
for different pedestal
heights and ripple
amplitudesδr,
compared to the
results from COBRA
(in red, below),
normalized to Alfvén
time on the magnetic
axis.

Growth rate (normalized to Alfvén time on magnetic axis)

δr [cm] 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

2.9 kPa
cm ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

3.2 kPa
cm ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ � � 0.18 0.27

0.09 0.14 0.18 0.22

3.6 kPa
cm

� � � � � � 0.09 0.13 0.17 0.21 0.35
0.06 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

4.0 kPa
cm

� 0.12 0.13 0.14 0.15 0.17 0.19 0.21 0.24 0.27 0.40
0.18 0.17 0.18 0.19 0.21 0.23 0.25 0.28 0.30 0.32 0.35

(continued caption) The⊕ symbols denote configurations stable in both the PB3D and COBRA results, whereas the configurations
indicated by� are stable in the PB3D simulations, but not in the COBRAn → ∞ limit. Growth rates of the order or smaller than about
0.05 should not be given too much importance.

structure at the midplane θ = 0, where the case is plot for a large ripple of
amplitude 3cm, pedestal height factor Hped = 0.7 with pressure gradient
4kPa
cm , and primary mode number n = 50. This is the configuration that

would be driven unstable first by an increasing ripple. Note from the figure,
however, that the toroidal ripple also modifies the mode structure quite
drastically when comparing it to the standard ballooning picture such as
shown in figure 5.9 for a lower primary mode number n, where the most
destabilizing perturbation is situated around the entire pedestal region. Cu-
riously, but not entirely unexpected, the localization is now much stronger
around the region most affected by displacement through the toroidal rip-
ple. In fact, the region where the destabilizing perturbation really becomes
peaked, lies entirely inside the last 3cm of the plasma closest to the edge.

It is interesting also to compare these computational results with the
experimental results from [Sai+07b] for JET and [Ura+06] for JT-60U. The
JET tokamak is unique in that its toroidal field ripple can be modified
through changing the currents in the generating coils. In the experiments
referred to in the paper, the ripple intensity was varied from the standard
(very low) 0.08% up to 1%. Among other things, it was found that a major
effect an increasing ripple has is to decrease the density in the pedestal.
Furthermore, the electron temperature remained largely constant and the
ion temperature was raised somewhat, but not enough to offset the decrease
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Figure 5.11
Mode structure of
normal component
of perturbation at the
midplaneθ = 0
with primary mode
numbern = 50
for a case perturbed
by a toroidal ripple
of amplitude 3cm
withHped = 0.7,
(sb − sa) =

0.15.
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(continued caption) The different colors serve to tell apart the different Fourier modes. Also shown are the normalized pressure
profiles. By comparing this with figure 5.9, the influence of the ripple can be noted.

in density. In the one-fluid MHD model, this then results in a marked
decrease of pressure. It was also found that the loss of thermal energy in the
plasma at ripple intensity of 1% was about 20% compared to the low ripple
intensity of 0.08% and the pedestal height was reduced to half its original
size.

In the second reference, similar experiments were done, on the JT-60U
tokamak. The ripple intensity was varied by varying the plasma minor and
major radii, from 0.4% to 2%. Also there, a decrease of pedestal pressure
was found as a function of the ripple intensity. To be more precise, the
conclusion could be drawn that the pedestal pressure attainable was also
decreased by a factor 2 [Ura+06, fig. 4].

To compare these results directly with the computational results ob-
tained here is not trivial. The configurations simulated here, for example,
do not contain an X-point geometry, the presence of which is known to have
a stabilizing effect. Also, though keeping the poloidal beta and toroidal cur-
rent constant for the different pedestal top pressures is useful for the study
performed in this work as it avoids contributions from the main plasma to
the edge stability, it is a poor model for what really happens in a real toka-
mak. Closer to the experimental situation would probably be keeping the
ratio between plasma energy and pedestal energy constant. Subsequently,
in order to generate equilibria, the pressure profiles were described through
equation 5.2, as well as the safety factors, using values of the same order
of magnitude as the experimental situations (pedestal widths of a few cm
and top pressures around 10 to 20kPa). For a realistic comparison with
experimental results, this would need to be improved with more detailed
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knowledge of experimental profiles. And finally, there is the issue of com-
paring toroidal field ripples with deformation of the plasma boundary. The
ITER definition used in [Sai+07b], for example, is given by

δBT ≡
maxBtor −minBtor
maxBtor +minBtor

, (5.16)

and how exactly this translates to a modification in the plasma shape is an
active topic of research. See for example [Tur12; Tur+13].

However, though it is clearly difficult to provide a realistic comparison
between experimental results and simulation results, and though this is
not the topic of this work, it can certainly be checked whether the general
trends between the two are at least consistent, which is what is done in the
remainder of this section. The important assumption is therefore made that
the ripple in toroidal field strength is directly and linearly related to the
ripple in the plasma minor radius, which is the parameter used here.

Before going on, to justify this assumption somewhat, observe that in
linear perturbative MHD the perturbation to the magnetic field due to a
plasma perturbation ξ = X ∇ψ

|∇ψ|2
that is purely normal to the flux surfaces,

is given by

Q = ∇×

(
X
∇ψ
|∇ψ|2

× B

)
, (5.17)

which in the (ψ, θ,ϕ) coordinate system can be rewritten to

JQ =

(
∂X

∂θ
+ q

∂X

∂ϕ

)
eψ +

(
qΘθ

∂X

∂ϕ
−
∂X

∂ψ

)
eθ−

−

(
∂

∂ψ
(qX) + q

∂

∂θ

(
XΘθ

))
eϕ ,

(5.18)

with Θθ defined as ∇θ·∇ψ
|∇ψ|2

, serving as a measure of the non-orthogonality
of the coordinates.

Now, in the case of the H-mode equilibria studied here, the safety factor
grows very fast in the pedestal near the plasma edge, much faster than the
other variations. Therefore, the dominant term in the toroidal component
of above equation becomes

JQϕ ≈ −q ′X , (5.19)

which can be rewritten for axisymmetric (before the perturbation) equilib-
ria making use of the well-known expression for the safety factor

q =
JBtor
R

, (5.20)
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to
δBtor
Btor

≈ −
1

q

dq

dψ
|∇ψ| δr , (5.21)

where δBtor = Qϕ

R is the absolute toroidal field change and δr the absolute
normal plasma displacement. Note how the shear defined in equation
5.7 appears naturally, which is quite logical, as the shear just expresses
how much the average direction of the magnetic fields changes towards
the next flux surface, so when the surfaces are deformed, they experience
this rotation of their average direction. In fact, for a circular plasma, the
proportionality constant becomes exactly the (negative inverse of the) shear.
The deviation in general axisymmetric configurations is mostly due to ef-
fects of non-circularity.

The proportionality factor between δBtor
Btor

and δr is plotted in figure
5.12 for 10 equidistant values in the range s = 0.9 . . . 1.0, for the case
Hped = 1.5 and (sb − sa) = 0.15. Also shown shaded and rescaled is
the factor

(
1+cos θ

2

)3 used in the poloidal modulation of the displacement,
from equation 5.14. Note the jump in difference between the profiles cor-
responding to positions in (s < 0.95) and out (0.95 < s < 1)the pedestal
region. Furthermore, from this figure, it can be argued that the approxi-
mation made through using the poloidal modulation of the displacement
is a justifiable approximation for the accuracy aimed at in this work, and
that the ripple amplitudes up to 3cm are roughly equivalent to a ripple in
the toroidal magnetic field up to 2%, the same order of magnitude as the
ripples treated in the experiments.

Figure 5.12
Proportionality factor
between toroidal
field ripple δBtor

Btor

and normal plasma
displacementδr,
with the factor -1 left
out. Also shown is
the modulation of the
plasma displacement
from equation 5.14.
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However, to back this up a little bit more, some simulations were done
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with ripple-modified profiles which had the shape prescribed by equation
5.21, with a deviation within 10−8. The results were not qualitatively dif-
ferent.

Assuming now a direct correspondence between the displacement of
the plasma boundary and the toroidal magnetic field ripple, the results from
[Sai+07b] can finally be seen to be consistent with the results from this work.
Indeed, especially figure 7 from that reference is interesting, which shows a
reduction of the pedestal pressure as a function of the toroidal field ripple.
The difference between the case with minimal toroidal field ripple and the
case with a 1% ripple was about 30% to 50%. Interpreting this decrease of
pedestal top pressure as the destabilization of peeling-ballooning modes for
pedestal top pressures larger than half the original value, consider figure 5.13
that shows for the configuration that is marginally stable for each ripple how
much the pedestal top pressure is, which is an equivalent. The situation that

Figure 5.13
Maximum stable
pedestal top pressure
for various ripple
amplitudes. The
pedestal width is
about 5cm. Can
be compared to
the scatter plot of
[Sai+07b, fig. 7]
keeping in mind the
reservations described
in the text.
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was marginally stable before applying a ripple had a pedestal top pressure
of 19kPa and a pressure gradient of about 4.0kPa

cm (Hped = 0.7 in table 5.1),
whereas for a ripple δr = 3cm, the first configuration that is stable has a
pedestal top pressure 14kPa and pressure gradient 2.9kPa

cm (Hped = 0.4).
This is a reduction of about 30%, comparable to experimental results to
within a factor of maybe 2, if the conversion between plasma displacement
and toroidal magnetic field ripple is taken to be 70%

m , from figure 5.12. Also,
as stated above, this was the conclusion drawn from figure 2 in [Ura+06],
as well.
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5.5 Conclusions

In this work the focus was on the interplay between pedestal top pressure
and stability and the modification of this stability by applying a toroidal rip-
ple. This is of interest as toroidal ripples are unavoidable due to construction
limitations for tokamak toroidal field coils.

By using the newhigh-n stability code PB3D,which is capable of treating
fully 3-D situations while taking into account the effects of a possibly per-
turbed plasma surface, first the influence of the pedestal pressure gradient
steepness was investigated for configurations that represented an axisym-
metric H-mode equilibrium. This was done by considering equilibrium
configurations with varying pedestal height and constant width, and others
with varying width and constant height. The results from these simulations
indicated that the pedestal pressure gradient is indeed the driving factor
behind the instabilities that can occur and that these instabilities are of the
ballooning type, in accordance with the standard picture.

Next, the influence of a toroidal ripple was shown by calculating the
stability of H-mode configurations with different pedestal heights that had
been modified by a 3-D toroidal ripple of a somewhat realistic shape and
with different ripple amplitudes. It was seen that, indeed, even small ripples
(i.e. of a few centimeters in JET dimensions) are of importance, and that
employing an axisymmetric approximation is not really justified, however
often done. Furthermore, qualitative agreement with experimental results
from both the JET and JT-60U tokamak was found, where the varying level
of degradation of the maximum attainable pedestal pressure gradient by a
varying intensity of toroidal field ripple was also observed.

This confirms the view that peeling-ballooning stability considerations
are indeed of importance in the determination of pedestal height and gra-
dient, implying that these are limited by the high-nMHD stability.
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Assess the importance / the effect of 3-D effects onMHD stability inmagnetic fusion
devices.

Repeated above is the main research goal of this work. First of all
it drove the development of a theoretical framework specifically
suited towards the description of high-nmodes in general 3-D con-

figurations, while correctly taking into account the influence of perturbing
the plasma edge. Once this was completed, a numerical code, named PB3D
(Peeling-Ballooning in 3-D) was designed and written, for the purpose of
solving the system of equations provided by the theory. PB3D, then, enabled
the study of exactly these 3-D effects and after verification of the PB3D re-
sults for standard test-cases with other, established numerical codes, a first
realistic case was investigated where 3-D effects play an important role: The
study of the influence of a toroidal ripple on the confinement properties of
an H-mode plasma.

In this chapter the research questions that related to these activities are
shortly discussed and an evaluation is given. Afterwards, somewords follow
as suggestions for further work.

6.1 Theoretical Framework

Question 1 How can the ideal high-nMHD stability be theoretically described
for fully 3-D equilibria while allowing for edge effects?

Previously, work had already been done for the full 3-D treatment of
high-nmodes, as well as work on a high-n stability treatment for axisym-
metric equilibria with possible edge perturbations. However, the combina-
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tion of a full 3-D approach with a treatment of an edge perturbation in a
dedicated manner for high-nmodes, did not yet exist, and this motivated
the research in this doctoral work. The creation of a dedicated, fully 3-D
edge ideal linear high-n stability theory was a novel contribution of this
work.

The energy principle was used, which combines the established the-
ory of ideal linear MHD, where perturbations of equilibrium situations
are considered, with normal mode analysis where the complex frequency
of each mode describes whether it is stable or unstable. On this basis a
theoretical framework was built, applying scale analysis in this parameter
n. This allowed for a reduction of the complexity of the problem, through
the removal of one of the three dimensions. As a result, the stability of
the normal modes considered was described through a system of coupled
1-D ordinary differential equations in the dimension corresponding to the
direction normal to the flux surfaces, containing eigenvalues corresponding
to the square of their complex frequencies.

One consequence of removing the dimension corresponding to the
direction perpendicular to the magnetic field lines but lying in the flux
surfaces, was that the resulting problem is inherently of the same complexity
of the 2-D (axisymmetric) problem, as the problems considered before.
However, where in the 2-D case the interpretation used was that only a
toroidal cross-section needs to be considered, through the 3-D case treated
here, it was shown that a more general interpretation is that the stability for
different field lines can be decoupled, and that their stability results from
integrating certain quantities along them.

The other major ingredient of the theoretical framework was the correct
inclusion of the effects related to stability of possible plasma edge pertur-
bations. This was one of the reasons why a Fourier series description was
used, combined with the reduction of the stabilizing effect of the vacuum as-
sumed to surround the plasma, to a term related to the plasma perturbation
at the edge. The final term, related to a possible steady-state skin current
in the plasma edge, which conventional theory allows for, was shown to be
unimportant in the high-n case.

With this approach a theoretical framework was constructed that allows
for the analysis of the stability of high-n edge modes that are field-aligned.
Although this does represent a restriction of the applicability, it may be
expected to be a useful approximation in many cases, as the experiments
indeed generally show very good correlation of magnetic perturbations
along the field lines. The reduction of the dimensionality to one equiva-
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lent to a 2-D system makes a numerical implementation of the problem a
doable task from the point of computational resources. For this reason, the
theoretical framework was judged to be a good basis for the further work
of this thesis.

6.2 The PB3D Numerical Code

Question 2 What is an efficient way of implementing this stability theory in a
numerical code?

The coupled system of 1-D ordinary differential equations, resulting
from the theoretical framework, was used as the focus of a the numerical
code PB3D. To solve it numerically the technique of finite differences was
used to reduce the differential operators. The resulting system of equa-
tions has an algebraic form and can be written as a generalized Eigenvalue
equation

AX = λBX , (4.27)

where thematrixA refers to the potential energy perturbation of the plasma
perturbation with kinetic energy given by the matrix B. The eigenvector
of this system, X, contains the components of the plasma perturbation
perpendicular to the flux surfaces, sampled on the numerical grid used, and
has as corresponding eigenvalue the square of the complex frequency of the
mode: λ = ω2, so that λ > 0 denotes stability and λ < 0 instability.

The PB3D numerical code was designed with the goal of efficiency in
mind as its intended usage includes parameter scans. It was written in mod-
ern Fortran, making use of a number of external libraries that were selected
for their efficiency. For example, the HDF5 framework was used for data
storage and to provide restart capacity. Furthermore, SLEPC, built on the
PETSC framework, was used to numerically solve the generalized eigen-
value equation. And the whole code was parallelized using the technology
of MPI, so that it can run on multiple processors.

The equilibrium configurations of which stability is to be calculated
are provided through the output of other numerical codes, and PB3D was
designed in modular fashion to be able to read both VMEC and HELENA
equilibrium data, but this can be extended to other formats. As stated
above, it was chosen to store the PB3D output itself in the HDF5 format,
so that it can, for example, be post-processed in order to provide visual
and numerical output. One of the post-processing capabilities that is worth
mentioning is the possibility of reintroducing the solution eigenvector in
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the equations in order to gain information about the individual terms of
the potential and kinetic energy in a process called energy reconstruction.

Finally, PB3D makes use of a numerical technique called Richardson
extrapolation, which provides successively better approximations to the
eigenvalues through the inclusion of more and more discretization points.
Furthermore, it yields a way of extrapolating the results for different orders
of approximation in order to reduce the discretization errors to still lower
orders.

This implementation of PB3D was found to be sufficiently efficient for it
to be used smoothly in parameter scans. Furthermore, its modular design
allows it to be extended or improved easily in the future.

Question 3 How does PB3D compare to other codes in terms of verification and
validation?

In order to verify the results obtained by PB3D, two techniques were
employed here: checks of physical consistency and comparison with other,
established numerical codes. The former kind included assessing the influ-
ence of simulation parameters as well as the use of energy reconstruction,
while the latter kind referred to comparisons with the 2-D global stability
code MISHKA and the 3-D n → ∞ code COBRA. The physical ranges
of applicability of these two codes show overlap with that of PB3D: For
MISHKA, the equilibrium configurations of which stability is calculated
has to be restricted to axisymmetry, and for COBRA only the infinite limit
of n can be considered, for modes that do not perturb the edge. The con-
clusions that could be drawn were positive: The physical consistency tests
behaved as expected, and PB3D produces similar stability limits as the other
codes, as well as similar mode structures.

The validation issue, on the other hand, would typically involve com-
parison with experiment. Considering the time scales, this is somewhat
outside the scope of this work, so therefore it will happen at a later stage.
On a side note, the speed of PB3D is a topic that has been extensively kept
in mind during its design, as well as during the implementation. However,
detailed optimization is also an issue that is to be addressed afterwards.
Here it is also worth repeating that the high-n nature of the perturbations
considered, that led to the reduction of the number of dimensions by one,
so that the stability could be described by a coupled system of 1-D ordinary
differential equations, has a very positive factor on the speed in any case.
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6.3 Realistic Application

Question 4 What is the influence of a toroidal ripple on the stability boundaries
of a realistic tokamak, from the ideal linear stability point of view?

After having designed and created the PB3D code, and after having
verified that the results for specified test cases were consistent with physical
criteria and other numerical codes, it was time to start working with it on
realistic applications. More precisely, it was chosen to focus on one first real-
istic application as a proof of concept: The influence on stability of toroidal
ripple effects. These effects result from the discreteness of the toroidal field
coils in tokamaks, which are generally modeled using the assumption of
axisymmetry, and are one of the major causes of actual departure from this
axisymmetry in reality. Furthermore, it has been observed in reality that,
indeed, the ripple size has an influence on the stability–larger than might
be expected. This has also been shown in the simulations performed here:
Varying the pedestal pressure profile steepness of a typical axisymmetric
high-confinement (H-mode) case, its stability changed, as steeper pedestals
ultimately drove a ballooningmode unstable. Furthermore, pedestal heights
that were previously found to be stable in the axisymmetric configurations,
could be driven unstable rather easily by applying a ripple to modify the
equilibrium in a 3-D way.

It was found that a ripple of only a few percent could decrease the max-
imum attainable pressure gradient by a factor 30-40%. A similar trend
was therefore observed as in the experiments done on the JET and JT-60U
tokamaks, which both showed a reduction of about half of the pedestal top
pressure height for the case of a strong ripple, compared to the case of a very
weak ripple. This served as an indication that the high-n stability indeed
plays a role in limiting the maximum attainable pedestal pressure steepness.
Also, it hinted at the usefulness of having a tool such as PB3D. Therefore,
as a first application, the study of the influence of a toroidal ripple on the
high-n pedestal stability was judged a success.

The study of many more consequences of 3-D effects on stability is now
possible, thanks to this new numerical tool PB3D, and their importance
can be assessed. In section 1.4, some suggestions were already given, that
are now repeated here:

Suggestion 1 Apart from toroidal ripple, what happenswith themodification of
ideal linear stability by other kinds of 3-D perturbations, such as RMP coils? Specif-
ically, what is the importance of the actual shape of the 3-Dmodification?
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Suggestion 2 Are there any extra (un)stable regions of parameter space that
exist for 3-D equilibria, similar to the regions defined by peeling and ballooning
stability for axisymmetric cases?

Some final words can be said about these suggestions. To perform
the simulations for the study of the influence of a toroidal ripple on the
linear ideal edge stability, for example, a new module was created in PB3D,
that is able to perturb axisymmetric HELENA equilibria and export them
to the 3-D equilibrium code VMEC. Moreover, this module is able to do
this for perturbations of general forms. For the study of RMP coils, for
example, realistic geometries could be taken into account. This way, it can
be investigated whether experimental findings concerning the placement
and shape of RMP coils can be observed from theory as well.

Furthermore, VMEC can be run in free-boundary mode, where the
shape of the boundary is allowed to be modified. This would lead to even
more realistic configurations. PB3D does not have limitations concern-
ing boundary perturbations. The combination of HELENA axisymmetric
equilibria with VMEC 3-D perturbed equilibria could be a successful one.

Also, the energy reconstruction functionality of PB3D could be useful
to investigate which are the terms that are driving an instability, and how
stabilization of instabilities happens through other terms. This way, studies
could be designed that, for example, search for the optimal shape of a 3-D
perturbation for destabilization.

The next developments of PB3D, as well as information about it, can be
found at the project homepage:

https://pb3d.github.io/

https://pb3d.github.io/
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ballooning transform, 10
Boltzmann equation, 18
Braginskii equations, 20

CAS3D, 14
CASTOR, 14
closure, 19
current-driven mode, 27
curvature, 32
cyclotron motion, 3

edge, 9
Edge Localized Mode, see ELM
eikonal, 8
ELITE, 11
ELM, 11
energy principle, 22
equilibrium, 6
essential boundary conditions, 30
extended energy principle, see energy

principle

field-line average, 44
fluid approach, 4
fluted perturbation, 7, 32
flux coordinates, 31
flux surface, 5
force formalism, 6
Fourier representation, 35

H-mode, 11
high confinement, see H-mode
high-n, 7
hot plasma, 18

JOREK, 15

kinetic theory, 19

L-mode, 11
linearization, 5
Liouville’s theorem, 18
low confinement, see L-mode

magnetic field, 31
magnetohydrodynamics, 4
Mercier criterion, 9
MHD, 21
MISHKA, 14

normal direction, 5
normal mode analysis, 6

parallel current, 30
peeling mode, 9
perturbation, 6
phase space, 18
plasma perturbation, 31
plasma potential energy, 30
pressure-driven mode, 27
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resonant magnetic perturbation, see
RMP

RMP, 11

Saha ionization equation, 18
scale analysis, 5
shear, 31
short wavelength, see high-n
stellarator, 3

TBM, 13
TERPSICHORE, 15
test blanket module, see TBM
tokamak, 3
toroidal field ripple, 13

vacuum, 42
vacuum potential energy, 42
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