PB3D  [2.45]
Ideal linear high-n MHD stability in 3-D
Public Member Functions | List of all members
num_ops::calc_zero_hh Interface Reference

Finds the zero of a function using Householder iteration. More...

Public Member Functions

character(len=max_str_ln) function calc_zero_hh_0d (zero, fun, ord, guess, max_nr_backtracks, output)
 0-D version More...
 
character(len=max_str_ln) function calc_zero_hh_3d (dims, zero, fun, ord, guess, max_nr_backtracks, output)
 3-D version More...
 

Detailed Description

Finds the zero of a function using Householder iteration.

If something goes wrong, by default multiple tries can be attempted, by backtracking on the correction by multiplying it by a relaxation factor. This can be done max_nr_backtracks times.

If still nothing is achieved, an error message is returned, that is empty otherwise.

Definition at line 35 of file num_ops.f90.

Member Function/Subroutine Documentation

◆ calc_zero_hh_0d()

character(len=max_str_ln) function num_ops::calc_zero_hh::calc_zero_hh_0d ( real(dp), intent(inout)  zero,
  fun,
integer, intent(in)  ord,
real(dp), intent(in)  guess,
integer, intent(in), optional  max_nr_backtracks,
logical, intent(in), optional  output 
)

0-D version

Parameters
[in,out]funfun(x,ord) with
  • x abscissa
  • ord order of derivative
  • fun ordinate
[in,out]zerooutput
[in]ordorder of solution
[in]guessfirst guess
[in]max_nr_backtracksmax nr. of tries with different relaxation factors
[in]outputgive output on convergence
Returns
possible error message

Definition at line 50 of file num_ops.f90.

+ Here is the call graph for this function:

◆ calc_zero_hh_3d()

character(len=max_str_ln) function num_ops::calc_zero_hh::calc_zero_hh_3d ( integer, dimension(3), intent(in)  dims,
real(dp), dimension(dims(1),dims(2),dims(3)), intent(inout)  zero,
  fun,
integer, intent(in)  ord,
real(dp), dimension(dims(1),dims(2),dims(3)), intent(in)  guess,
integer, intent(in), optional  max_nr_backtracks,
logical, intent(in), optional  output 
)

3-D version

Parameters
[in,out]funfun(dims,x,ord) with
  • dims(3) dimension of abscissa and ordinate
  • x(dims(1),dims(2),dims(3)) abscissa
  • ord order of derivative
  • fun(dims(1),dims(2),dims(3)) ordinate
[in]dimsdimensions of the problem
[in,out]zerooutput
[in]ordorder of solution
[in]guessfirst guess
[in]max_nr_backtracksmax nr. of backtracks
[in]outputgive output on convergence
Returns
possible error message

Definition at line 243 of file num_ops.f90.

+ Here is the call graph for this function:

The documentation for this interface was generated from the following file: